Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Front Immunol ; 15: 1374437, 2024.
Article in English | MEDLINE | ID: mdl-38711507

ABSTRACT

Mycobacterium avium complex (MAC) is a non-tuberculous mycobacterium widely distributed in the environment. Even though MAC infection is increasing in older women and immunocompromised patients, to our knowledge there has been no comprehensive analysis of the MAC-infected host-cell transcriptome-and particularly of long non-coding RNAs (lncRNAs). By using in vitro-cultured primary mouse bone-marrow-derived macrophages (BMDMs) and Cap analysis of gene expression, we analyzed the transcriptional and kinetic landscape of macrophage genes, with a focus on lncRNAs, during MAC infection. MAC infection of macrophages induced the expression of immune/inflammatory response genes and other genes similar to those involved in M1 macrophage activation, consistent with previous reports, although Nos2 (M1 activation) and Arg1 (M2 activation) had distinct expression profiles. We identified 31 upregulated and 30 downregulated lncRNA promoters corresponding respectively to 18 and 26 lncRNAs. Upregulated lncRNAs were clustered into two groups-early and late upregulated-predicted to be associated with immune activation and the immune response to infection, respectively. Furthermore, an Ingenuity Pathway Analysis revealed canonical pathways and upstream transcription regulators associated with differentially expressed lncRNAs. Several differentially expressed lncRNAs reported elsewhere underwent expressional changes upon M1 or M2 preactivation and subsequent MAC infection. Finally, we showed that expressional change of lncRNAs in MAC-infected BMDMs was mediated by toll-like receptor 2, although there may be other mechanisms that sense MAC infection. We identified differentially expressed lncRNAs in MAC-infected BMDMs, revealing diverse features that imply the distinct roles of these lncRNAs in MAC infection and macrophage polarization.


Subject(s)
Gene Expression Profiling , Macrophages , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , RNA, Long Noncoding , Transcriptome , RNA, Long Noncoding/genetics , Animals , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Mycobacterium avium Complex/immunology , Mycobacterium avium Complex/genetics , Mice , Mycobacterium avium-intracellulare Infection/immunology , Mycobacterium avium-intracellulare Infection/genetics , Mycobacterium avium-intracellulare Infection/microbiology , Macrophage Activation/genetics , Macrophage Activation/immunology , Mice, Inbred C57BL , Cells, Cultured , Gene Expression Regulation
2.
J Oral Biosci ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782256

ABSTRACT

OBJECTIVES: Several studies have reported the effects of Fusobacterium nucleatum stimulation on oral cancer cells. However, given that these studies typically span a stimulation period of three days to eight days, the in vitro studies conducted to date may not fully mimic the oral cancer environment, which involves constant exposure to oral commensal bacteria. This study aimed to elucidate the effects of prolonged and persistent Fusobacterium nucleatum infection on oral cancer cells. METHODS: Human tongue squamous cell carcinoma (SCC) cells were continuously stimulated with Fusobacterium nucleatum for two or four weeks, then experimentally evaluated. RESULTS: Prolonged, persistent Fusobacterium nucleatum stimulation increased the cells' proliferative, invasive, and migratory capacities, decreased their expression of epithelial markers, and increased their expression of mesenchymal markers progressively with time. The cells also adopted a spindle-shaped morphology and cell-to-cell contact dependence was progressively lost, suggesting time-dependent occurrence of epithelial-mesenchymal transition. Furthermore, mRNA levels of CD44, a cancer stem cell marker, were time-dependently upregulated. When SCC cells were stimulated with Fusobacterium nucleatum for four weeks in the presence of dexamethasone, Fusobacterium nucleatum induced epithelial-mesenchymal transition was inhibited. CONCLUSIONS: Epithelial-mesenchymal transition in human tongue SCC cells was time-dependently induced by prolonged, persistent Fusobacterium nucleatum stimulation and inhibited by dexamethasone. Routine decontamination of the oral cavity may be crucial for controlling tumor invasion and metastasis.

3.
Int Endod J ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780351

ABSTRACT

AIM: Calcium hydroxide (CH) has been considered as a direct pulp capping materials (DPC) for the last decades despite having some limitations. Phosphorylate pullulan (PPL) incorporated with CH (CHPPL) is a novel biomaterial that was introduced as a promising DPC material. Thus, the aim of the study was to evaluate the inflammatory response and mineralized tissue formation (MTF) ability of PPL-based CH formulations on rat molars after DPC. METHODOLOGY: This study consisted of six groups: CH with 1% PPL (CHPPL-1); 3% PPL (CHPPL-3); 5% PPL (CHPPL-5); Dycal and NEX MTA Cement (N-MTA) as the positive control, and no capping materials (NC). One hundred twenty maxillary first molar cavities were prepared on Wistar rats. After capping, all the cavities were restored with 4-META/MMA-TBB resin and pulpal responses were evaluated at days 1, 7, and 28. Kruskal-Wallis followed by Mann-Whitney U-test was performed with a significance level of 0.05. Immunohistochemical expression of IL-6, Nestin, and DMP-1 was observed. RESULTS: At day 1, CHPPL-1, N-MTA, and Dycal exhibited no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC showed mild to moderate inflammation, and the results were significantly different (p < .05). At day 7, mild to moderate inflammation was observed in CHPPL-1, N-MTA, and Dycal, whereas CHPPL-3, CHPPL-5, and NC exhibited moderate to severe inflammation. Significant differences were observed between CHPPL-1 and N-MTA with NC (p < .05), CHPPL-1 and CHPPL-3 with CHPPL-5 and Dycal (p < .05), and CHPPL-3 with N-MTA (p < .05). A thin layer of mineralized tissue formation (MTF) was observed in all groups. At day 28, CHPPL-1, Dycal, and N-MTA showed no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC exhibited mild to severe inflammation, and statistically significant difference was detected (p < .05). CHPPL-1, Dycal, and N-MTA exhibited continuous MTF, whilst CHPPL-3, CHPPL-5, and NC had thicker and interrupted MTF. Significant differences were observed between CHPPL-1, CHPPL-3, and N-MTA with NC group (p < .05). Variable expressions of IL-6, Nestin, and DMP-1 indicated differences in the materials' impact on odontoblast-like cell formation and tissue mineralization. CONCLUSIONS: These findings suggest that CHPPL-1 has the potential to minimize pulpal inflammation and promote MTF and had similar efficacy as MTA cement.

4.
Antioxidants (Basel) ; 13(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38671915

ABSTRACT

Ocular exposure to particulate matter (PM) causes local inflammation; however, the influence of neutrophils on PM-induced ocular inflammation is still not fully understood. In this study, we constructed a system to investigate the role of PM in ocular inflammation using a co-culture of human corneal epithelial cells (HCE-T) and differentiation-induced neutrophils (dHL-60). To investigate whether HCE-T directly endocytosed PM, we performed a holographic analysis, which showed the endocytosis of PM in HCE-T. The cytokines and chemokines produced by HCE-T were measured using an ELISA. HCE-T treated with PM produced IL-6 and IL-8, which were inhibited by N-Acetyl-L-cysteine (NAC), suggesting the involvement of ROS. Their co-culture with dHL-60 enhanced their production of IL-6, IL-8, and MCP-1. This suggests an inflammatory loop involving intraocular corneal epithelial cells and neutrophils. These cytokines and chemokines are mainly regulated by NF-κB. Therefore, this co-culture system was examined in the presence of an IKK inhibitor known to downregulate NF-κB activity. The IKK inhibitor dramatically suppressed the production of these factors in co-culture supernatants. The results suggest that the inflammatory loop observed in the co-culture is mediated through ROS and the transcription factor NF-κB. Thus, the co-culture system is considered a valuable tool for analyzing complex inflammations.

5.
Cureus ; 16(1): e53292, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38435920

ABSTRACT

Background This study aimed to examine the association of suspended particulate matter (SPM) with outpatient attendance for allergic conjunctivitis. Methodology The information on air pollution, encompassing total hydrocarbons, non-methane hydrocarbons, methane, carbon monoxide, nitrogen oxide, nitric oxide, oxidants, and SPM alongside data concerning daily weather conditions such as temperature, wind speed, and humidity, was gathered. Subsequently, the weekly mean values for outpatient visits, air pollution, and weather parameters were computed. Results The number of outpatient visits for allergic conjunctivitis was significantly associated with SPM levels (r = 0.70, p = 0.0037), oxidant levels (r = 0.70, p = 0.0038), wind speed (r = 0.48, p = 0.0472), and humidity (r = 0.77, p = 0.0009) from January to March, as well as SPM levels (r = 0.53, p = 0.0309) and carbon monoxide (r = 0.56, p = 0.0230) from April to June. Multivariate analysis showed that SPM (odds ratio = 1.37, p = 0.0161) and wind velocity (odds ratio = 1.52, p = 0.0038) were significant predictors of the number of outpatient visits from January to December. Conclusions SPM levels were the only independent predictor of outpatient visits for allergic conjunctivitis, suggesting that SPM contributes to the pathophysiology of this condition.

6.
Gastrointest Endosc ; 99(6): 1039-1047.e1, 2024 06.
Article in English | MEDLINE | ID: mdl-38224821

ABSTRACT

BACKGROUND AND AIMS: A submucosal injection solution is used to assist in endoscopic surgery. The high viscosity of current solutions makes them difficult to inject. In the present study, we developed an extremely low-viscosity, easy-to-use submucosal injection solution using phosphorylated pullulan (PPL). METHODS: The PPL solutions were prepared at different concentrations, and their viscosities were measured. The mucosal elevation capacity was evaluated using excised porcine stomachs. Controls included 0.4% sodium hyaluronate (SH), 0.6% sodium alginate (SA), and saline. To evaluate the practicality, the catheter injectability of 0.7% PPL was measured, and EMR and endoscopic submucosal dissection (ESD) were performed using the stomach and colorectum of live pigs. As controls, 0.4% SH and saline were used. RESULTS: The PPL solutions were of extremely low viscosity compared to the solutions of 0.4% SH and 0.6% SA. Nevertheless, the mucosal elevation capacity of PPL solutions for up to 0.7% concentration was similar to that of 0.4% SH, and 0.7% PPL was less resistant to catheter infusion than 0.4% SH and 0.6% SA. In live pig experiments with endoscopic mucosal resection and ESD, snaring after submucosal injection of 0.7% PPL was easier than with 0.4% SH, ESD with 0.7% PPL produced less bubble formation than with 0.4% SH, and the procedure time tended to be shorter with 0.7% PPL than with 0.4% SH because of the shorter injection time. CONCLUSIONS: The PPL solution is an innovative and easy-to-use submucosal injection solution.


Subject(s)
Endoscopic Mucosal Resection , Gastric Mucosa , Glucans , Animals , Glucans/administration & dosage , Endoscopic Mucosal Resection/methods , Swine , Viscosity , Gastric Mucosa/surgery , Injections , Phosphorylation , Intestinal Mucosa/surgery , Hyaluronic Acid/administration & dosage , Alginates
7.
Front Bioeng Biotechnol ; 11: 1243951, 2023.
Article in English | MEDLINE | ID: mdl-37885453

ABSTRACT

The current study aimed to evaluate bone tissue regeneration using a combination of ß-tricalcium phosphate (ßTCP) and phosphorylated pullulan (PPL, a phosphate-rich polysaccharide polymer consisting of maltotriose units). Round defects of 2 mm diameter were created in the arterial center of rat tibiae, which were further treated with vehicle (control group), ßTCP (ßTCP group), or ßTCP + PPL (ßTCP + PPL group) grafts. The control specimens without bone grafts exhibited rapid bone formation after 1 week; however, the regenerated bone was not resorbed until 4 weeks. In contrast, ßTCP-grafted specimens exhibited fewer but thicker trabeculae, whereas the ßTCP + PPL group displayed many fine trabeculae at 4 weeks. In the ßTCP + PPL group, new bone was associated with the ßTCP granules and PPL. Similarly, PHOSPHO1-positive osteoblasts were localized on the ßTCP granules as well as the PPL. On the other hand, TRAP-reactive osteoclasts predominantly localized on newly-formed bone and ßTCP granules rather than on the PPL. No significant differences were observed in the expression of Alp, Integrin αv, Osteopontin, Osteocalcin, and Dmp-1 in PPL-treated MC3T3-E1 osteoblastic cells, suggesting that PPL did not facilitate osteoblastic differentiation. However, von Kossa staining identified abundant needle-like calcified structures extending inside the PPL. Furthermore, transmission electron microscopy (TEM) revealed many globular structures identical to calcified nodules. In addition, calcified collagen fibrils were observed in the superficial layer of the PPL. Thus, PPL may serve as a scaffold for osteoblastic bone formation and promotes calcification on its surface. In conclusion, we speculated that ßTCP and PPL might promote bone regeneration and could be integrated into promising osteoconductive materials.

8.
Int J Mol Sci ; 24(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240384

ABSTRACT

Neutrophil energy metabolism during phagocytosis has been previously reported, and adenosine triphosphate (ATP) plays a crucial role in endocytosis. Neutrophils are prepared by intraperitoneal injection of thioglycolate for 4 h. We previously reported a system established for measuring particulate matter endocytosis by neutrophils using flow cytometry. In this study, we utilized this system to investigate the relationship between endocytosis and energy consumption in neutrophils. A dynamin inhibitor suppressed ATP consumption triggered by neutrophil endocytosis. In the presence of exogenous ATP, neutrophils behave differently during endocytosis depending on ATP concentration. The inhibition of ATP synthase and nicotinamide adenine dinucleotide phosphate oxidase but not phosphatidylinositol-3 kinase suppresses neutrophil endocytosis. The nuclear factor kappa B was activated during endocytosis and inhibited by I kappa B kinase (IKK) inhibitors. Notably, IKK inhibitors restored endocytosis-triggered ATP consumption. Furthermore, data from the NLR family pyrin domain containing three knockout mice suggest that inflammasome activation is not involved in neutrophil endocytosis or concomitant ATP consumption. To summarize, these molecular events occur via endocytosis, which is closely related to ATP-centered energy metabolism.


Subject(s)
Adenosine Triphosphate , Neutrophils , Mice , Animals , Neutrophils/metabolism , Adenosine Triphosphate/metabolism , Endocytosis , Phagocytosis , I-kappa B Proteins/metabolism , Inflammasomes/metabolism , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177041

ABSTRACT

Despite being able to adhesively restore teeth, adhesives and cement do not possess any anticariogenic protection potential, by which caries recurrence may still occur and reduce the clinical lifetime of adhesive restorations. Several antibacterial agents have been incorporated into dental adhesives and cement to render them anticariogenic. Due to an additional therapeutic effect, such materials are classified as 'dental combination products' with more strict market regulations. We incorporated cetylpyridinium chloride (CPC), often used for oral hygiene applications, into montmorillonite (CPC-Mont), the latter to serve as a carrier for controlled CPC release. CPC-Mont incorporated into tissue conditioner has been approved by the Pharmaceuticals and Medical Devices Agency (PmontMDA) in Japan. To produce a clinically effective dental cement with the antibacterial potential to prevent secondary caries, we incorporated CPC-Mont into PMMA resin cement. We measured the flexural strength, shear bond strength onto dentin, CPC release, and the biofilm-inhibition potential of the experimental CPC-Mont-containing PMMA cement. An 8 and 10 wt% CPC-Mont concentration revealed the antibacterial potential without reducing the mechanical properties of the PMMA cement.

10.
Chemistry ; 29(38): e202300881, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37096647

ABSTRACT

Nanoparticles exhibiting enzymatic functions have garnered considerable attention due to their structural robustness and the profusion of active sites that can be introduced to a single nanosized particle. Here we report that nanosized mixed-metal zeolitic imidazolate frameworks (ZIFs) show a superoxide dismutase (SOD)-like catalytic activity. We chose a ZIF composed of copper and zinc ions and 2-methylimidazole, CuZn-ZIF-8, in which the Cu and Zn ions are bridged by an imidazolato ligand. This coordination geometry closely mimics the active site of CuZn superoxide dismutase (CuZnSOD). The CuZn-ZIF-8 nanoparticles exhibit potent SOD-like activity, attributed to their porous nature and numerous copper active sites, and also possess exceptional recyclability.


Subject(s)
Nanoparticles , Zeolites , Copper/chemistry , Zeolites/chemistry , Biomimetics , Superoxide Dismutase/chemistry
11.
Dent Mater J ; 42(3): 433-440, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37032102

ABSTRACT

Recombinant human bone morphogenetic protein-2 (rhBMP-2) is one of the growth factors that may induce the formation of new bone. The aim was to determine the efficacy of low doses of rhBMP-2 for bone regeneration using a collagen sponge as a carrier. Three doses of rhBMP-2 (1.167, 0.117, and 0.039 mg/mL) were combined with an absorbable collagen sponge (ACS) as a delivery vehicle. The rhBMP-2/ACS implants were placed in the subcutaneous tissues of rat backs. X-ray microcomputed tomography (micro-CT) and histological analysis were used to evaluate bone formation. The samples treated with 1.167 mg/mL of rhBMP-2 showed greater bone formation than the samples treated with 0.117 mg/mL of rhBMP-2 four weeks after surgery. However, there was no evidence of bone formation in the samples that were treated with 0.039 mg/mL of rhBMP-2. It was found that rhBMP-2 was osteogenic even at one-tenth of its manufacturer's recommended concentration (1.167 mg/mL), indicating its potential for clinical use at lower concentrations.


Subject(s)
Bone Morphogenetic Protein 2 , Transforming Growth Factor beta , Humans , Rats , Animals , X-Ray Microtomography , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , Bone Morphogenetic Protein 2/pharmacology , Collagen/pharmacology , Recombinant Proteins/pharmacology , Bone Regeneration , Absorbable Implants
12.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837083

ABSTRACT

Certain dentin hypersensitivity treatment materials include oxalic acid to coat dentin surfaces with minerals, while certain organic acids possess a remineralization effect. Herein, an organic acid that inhibits the demineralization and coating of root surfaces was evaluated. Specimens were produced using five non-carious extracted bovines. Four different acids were used: oxalic acid (OA), malonic acid (MA), polyacrylic acid (PA), and succinic acid (SA). Each acid was applied to the root surface and washed using distilled water or a remineralization solution, and the surface was observed using scanning electron microscopy (SEM). All the surfaces of each specimen, barring the polished surface, were covered with wax and immersed in an automatic pH cycling system for two weeks. Dentin demineralization was analyzed using transverse microradiography (TMR) before and after pH cycling. SEM analysis demonstrated that the three acid groups demineralized the dentin surface, whereas the OA group generated crystals covering the dentin surface, even in a distilled water environment. TMR analysis revealed that the OA groups showed significantly lower integrated mineral loss compared with the other groups, even in the distilled water environment. The results suggest that OA generates insoluble calcium oxalate crystals on the dentin and suppresses demineralization even under low saliva conditions.

13.
Pharmaceutics ; 15(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36839866

ABSTRACT

Although autopolymerizing resin offers numerous applications in orthodontic treatment, plaque tends to accumulate between the appliance and the mucosa, which increases the number of microorganisms present. In this study, we added cetylpyridinium chloride (CPC) loaded montmorillonite (Mont) and nanoporous silica (NPS) to autopolymerizing resin (resin-Mont, resin-NPS) and evaluated their drug release capacity, antimicrobial capacity, drug reuptake capacity, mechanical strength, and color tone for the devolvement of autopolymerizing resin with antimicrobial properties. As observed, resin-Mont and resin-NPS were capable of the sustained release of CPC for 14 d, and a higher amount of CPC was released compared to that of resin-CPC. Additionally, resin-Mont and resin-NPS could reuptake CPC. Moreover, the antimicrobial studies demonstrated that resin-Mont and resin-NPS could release effective amounts of CPC against Streptococcus mutans for 14 d and 7 d after reuptake, respectively. Compared to resin-CPC, resin-Mont exhibited a higher sustained release of CPC in all periods, both in the initial sustained release and after reuptake. However, the mechanical strength decreased with the addition of Mont and NPS, with a 36% reduction observed in flexural strength for resin-Mont and 25% for resin-NPS. The application of these results to the resin portion of the orthodontic appliances can prevent bacterial growth on the surface, as well as on the interior, of the appliances and mitigate the inflammation of the mucosa.

14.
J Prosthodont Res ; 67(2): 180-188, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-35661642

ABSTRACT

Purpose Existing options for attaching facial and somato prostheses, such as skin adhesives, are problematic because of microbial colonization and skin irritation. This study aims to evaluate the suitability of adhesive polyurethane gel sheets containing cetylpyridinium chloride (CPC)-montmorillonite (Mont) for prosthesis fastening.Methods Adhesive gel sheets were fabricated as mixtures of base resin (99.6 wt% polyol) and hardening agent at a ratio of 3:1 with 0 (control), 2, 5, 10, or 15 wt% CPC-Mont. The controlled release of CPC, antimicrobial activity, in vitro skin irritation, and adhesive force against silicone and human skin at different blending ratios were determined. Statistical analyses of the data were performed using one-way analysis of variance (ANOVA), analysis of covariance (ANCOVA), Tukey's test, or single regression analysis, as appropriate.Results The amount of CPC released increased with the CPC-Mont blending ratio and was linearly proportional to the surface occupation area ratio of CPC-Mont. The samples with >5 wt% CPC-Mont exhibited antimicrobial activity against Staphylococcus aureus at an exposure time of 0 d, and samples with >2 wt% CPC-Mont exhibited antimicrobial activity against Candida albicans at an exposure time of 1 d. All samples were classified as non-irritant based on an in vitro skin irritation test. The adhesive force on the silicone material and human skin decreased with increasing CPC-Mont blending ratio.Conclusions Samples with 5 wt% CPC-Mont are potential candidates as antimicrobial adhesive polyurethane gel sheets for fastening facial and somato prostheses.


Subject(s)
Anti-Infective Agents , Dental Implants , Humans , Cetylpyridinium , Bentonite , Polyurethanes , Dental Cements , Anti-Infective Agents/pharmacology
15.
Commun Biol ; 5(1): 907, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064593

ABSTRACT

Oxytocin is involved in pain transmission, although the detailed mechanism is not fully understood. Here, we generate a transgenic rat line that expresses human muscarinic acetylcholine receptors (hM3Dq) and mCherry in oxytocin neurons. We report that clozapine-N-oxide (CNO) treatment of our oxytocin-hM3Dq-mCherry rats exclusively activates oxytocin neurons within the supraoptic and paraventricular nuclei, leading to activation of neurons in the locus coeruleus (LC) and dorsal raphe nucleus (DR), and differential gene expression in GABA-ergic neurons in the L5 spinal dorsal horn. Hyperalgesia, which is robustly exacerbated in experimental pain models, is significantly attenuated after CNO injection. The analgesic effects of CNO are ablated by co-treatment with oxytocin receptor antagonist. Endogenous oxytocin also exerts anti-inflammatory effects via activation of the hypothalamus-pituitary-adrenal axis. Moreover, inhibition of mast cell degranulation is found to be involved in the response. Taken together, our results suggest that oxytocin may exert anti-nociceptive and anti-inflammatory effects via both neuronal and humoral pathways.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Oxytocin , Paraventricular Hypothalamic Nucleus , Analgesics/metabolism , Animals , Anti-Inflammatory Agents/metabolism , GABAergic Neurons/metabolism , Oxytocin/metabolism , Pain/drug therapy , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Transgenic
16.
J Vis Exp ; (185)2022 07 22.
Article in English | MEDLINE | ID: mdl-35938815

ABSTRACT

Protozoan parasites infect humans and many warm-blooded animals. Toxoplasma gondii, a major protozoan parasite, is commonly found in HIV-positive patients, organ transplant recipients and pregnant women, resulting in the severe health condition, Toxoplasmosis. Another major protozoan, Neospora caninum, which bears many similarities to Toxoplasma gondii, causes serious diseases in animals, as does Encephalomyelitis and Myositis-Polyradiculitis in dogs and cows, resulting in stillborn calves. All these exhibited similar nucleoside triphosphate hydrolases (NTPase). Neospora caninum has a NcNTPase, while Toxoplasma gondii has a TgNTPase-I. The enzymes are thought to play crucial roles in propagation and survival. In order to establish compounds and/or extracts preventing protozoan infection, we targeted these enzymes for drug discovery. The next step was to establish a novel, highly sensitive, and highly accurate assay by combining a conventional biochemical enzyme assay with a fluorescent assay to determine ADP content. We also validated that the novel assay fulfills the criteria to carry out high-throughput screening (HTS) in the two protozoan enzymes. We performed HTS, identified 19 compounds and six extracts from two synthetic compound libraries and an extract library derived from marine bacteria, respectively. In this study, a detailed explanation has been introduced on how to carry out HTS, including information about the preparation of reagents, devices, robot arm, etc.


Subject(s)
Coccidiosis , Neospora , Robotics , Toxoplasma , Animals , Antibodies, Protozoan , Cattle , Coccidiosis/parasitology , Coccidiosis/veterinary , Dogs , Female , High-Throughput Screening Assays , Humans , Hydrolases , N-Glycosyl Hydrolases , Nucleosides , Polyphosphates , Pregnancy
17.
Med Oncol ; 39(8): 118, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35674939

ABSTRACT

We investigated the antitumor effects of oleanolic acid (OA) and ursolic acid (UA) on adult T-cell leukemia cells. OA and UA dose-dependently inhibited the proliferation of adult T-cell leukemia cells. UA-treated cells showed caspase 3/7 and caspase 9 activation. PARP cleavage was detected in UA-treated MT-4 cells. Activation of mTOR and PDK-1 was inhibited by UA. Autophagosomes were detected in MT-4 cells after UA treatment using electron microscopy. Consistently, mitophagy was observed in OA- and UA-treated MT-4 cells by confocal microscopy. The mitochondrial membrane potential in MT-4 cells considerably decreased, and mitochondrial respiration and aerobic glycolysis were significantly reduced following UA treatment. Furthermore, MT-1 and MT-4 cells were sorted into two regions based on their mitochondrial membrane potential. UA-treated MT-4 cells from both regions showed high activation of caspase 3/7, which were inhibited by Z-vad. Interestingly, MT-4 cells cocultured with sorted UA-treated cells showed enhanced proliferation. Finally, UA induced cell death and ex vivo PARP cleavage in peripheral blood mononuclear cells from patients with adult T-cell leukemia. Therefore, UA-treated MT-4 cells show caspase activation following mitochondrial dysfunction and may produce survival signals to the surrounding cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Leukemia-Lymphoma, Adult T-Cell , Oleanolic Acid , Triterpenes , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Leukemia-Lymphoma, Adult T-Cell/metabolism , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triterpenes/metabolism , Triterpenes/pharmacology , Ursolic Acid
18.
J Oral Biosci ; 64(2): 237-244, 2022 06.
Article in English | MEDLINE | ID: mdl-35398598

ABSTRACT

OBJECTIVES: Osteoclasts can sense the surface topography of materials. However, it is difficult to identify the structural factors that affect osteoclast formation and its function. Furthermore, we hypothesized that the type of osteoclast precursor cells also affects osteoclastogenesis in the materials. In this study, we investigated the effects of defined micro/nanoscale patterns on osteoclastogenesis from bone marrow cells (BMCs). METHODS: Various cyclo-olefin polymer (COP) patterns were prepared using nanoimprinting. The effects of shape, size, and height of the patterns, and the wettability of the patterned surfaces on osteoclastogenesis from BMCs were evaluated in vitro. RESULTS: Osteoclast formation was promoted on pillars (diameter, 1 µm or 500 nm; height, 500 nm). Notably, osteoclastogenesis from BMCs was better promoted on hydrophobic pillars than on hydrophilic pillars. In contrast, decreased osteoclast formation was observed on the nanopillars (diameter, 100 nm; height, 200 nm). CONCLUSIONS: We demonstrated the promotion of osteoclast formation from BMCs on hydrophobic pillars with diameters of 1 µm and 500 nm. Some cellular behaviors in the patterns were dependent on the type of osteoclast precursor cells. The designed patterns are useful for designing the surface of dental implants or bone replacement materials with a controllable balance between osteoblast and osteoclast activities.


Subject(s)
Osteoclasts , RANK Ligand , Animals , Bone Marrow Cells , Mice , Osteoblasts , Osteogenesis , RANK Ligand/pharmacology
19.
Int Arch Allergy Immunol ; 183(6): 579-590, 2022.
Article in English | MEDLINE | ID: mdl-35100604

ABSTRACT

INTRODUCTION: The mucociliary transport function of the airway epithelium is largely dependent on ciliary beating. The control signal of ciliary beating is thought to be intracellular Ca2+. We herein investigated the expression of T-type voltage-gated calcium channel (VGCC), a generator of intracellular Ca2+ oscillation, in the human nasal mucosa. METHODS: The inferior turbinate was collected from patients with chronic hypertrophic rhinitis. The expression of T-type VGCC α1 subunits was examined by immunohistochemistry, transmission immunoelectron microscopy, Western blot, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Participation of T-type VGCC in the ciliary beat regulation was examined by pharmacological inhibition tests using specific blockers of T-type VGCC in ex vivo measurements of the ciliary beat frequency (CBF) and ATP release and in intracellular Ca2+ imaging of isolated ciliated cells. RESULTS: Immunohistochemical staining showed the expressions of T-type VGCC α1 subunits, Cav3.1 and Cav3.3, on the surface of the epithelial cells. At the ultrastructural level, immunoreactivity for Cav3.1 was localized on the surface of the cilia, and that for Cav3.3 was localized in the cilia and at the base of the cilia. The existence of Cav3.1 and Cav3.3 was confirmed at the protein level by Western blot and at the transcriptional level by real-time RT-PCR. Specific blockers of T-type VGCC, mibefradil and NNC 55-0396, significantly inhibited CBF. These blockers also inhibited a CBF increase induced by 8-bromo-cAMP/8-bromo-cGMP and significantly lowered the intracellular Ca2+ level of isolated ciliated cells in a time-dependent manner. On the other hand, the ATP release from the nasal mucosa was not changed by mibefradil or NNC 55-0396. CONCLUSION: These results indicate that T-type VGCC α1 subunits, Cav3.1 and Cav3.3, exist at the cilia of the nasal epithelial cells and participate in the regulation of ciliary beating and that these channels act downstream of cAMP/cGMP.


Subject(s)
Calcium Channels, T-Type , Cilia , Adenosine Triphosphate/metabolism , Calcium/metabolism , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Cilia/physiology , Cyclic GMP , Epithelial Cells/metabolism , Humans , Mibefradil/metabolism , Mibefradil/pharmacology , Nasal Mucosa/metabolism
20.
Auris Nasus Larynx ; 49(6): 964-972, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34728118

ABSTRACT

OBJECTIVE: Transglutaminase (TGM)2 and peroxisome proliferator-activated receptor (PPAR)γ are thought to participate in the pathogenesis of nasal polyp formation in cystic fibrosis (CF). We herein investigated expressions of cystic fibrosis transmembrane conductance regulator (CFTR), TGM2, PPARγ and isopeptide bonds, a reaction product of TGM, in non-CF nasal polyps. METHODS: Nasal polyps and inferior turbinates were collected from chronic rhinosinusitis patients without CF during transnasal endoscopic sinonasal surgery. Expressions of CFTR, TGM2, isopeptide bonds and PPARγ were examined by fluorescence immunohistochemistry and quantitative RT-PCR. Expression of CFTR was also analyzed by Western blot. RESULTS: Immunohistochemical fluorescence of the nasal polyp was significantly lower for CFTR and PPARγ, and significantly higher for TGM2 and isopeptide bonds than that of the turbinate mucosa. Lower expression of CFTR in the nasal polyp than in the turbinate mucosa was also observed in Western blot. Expression of PPARG mRNA was significantly lower in the nasal polyp than in the turbinate mucosa, whereas expressions of CFTR mRNA or TGM2 mRNA did not differ between the two tissues. Immunohistochemical fluorescence for CFTR showed significant negative correlation with that for TGM2 and isopeptide bonds, and significant positive correlation with that for PPARγ. The fluorescence for TGM2 was positively correlated with that for isopeptide bonds and negatively correlated with that for PPARγ. The fluorescence for isopeptide bonds tended to be negatively correlated with that for PPARγ. CONCLUSIONS: These results suggest a possible role of the CFTR-TGM2-PPARγ cascade in the pathogenesis of nasal polyp formation in non-CF patients as in CF patients.


Subject(s)
Nasal Polyps , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Nasal Mucosa/metabolism , Nasal Polyps/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...