Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
mSystems ; 8(6): e0081723, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37843256

ABSTRACT

IMPORTANCE: The elucidation of the molecular basis of virus-host coevolutionary interactions is boosted with state-of-the-art sequencing technologies. However, the sequence-only information is often insufficient to output a conclusive argument without biochemical characterizations. We proposed a 1-day and one-pot approach to confirm the exact function of putative restriction-modification (R-M) genes that presumably mediate microbial coevolution. The experiments mainly focused on a series of putative R-M enzymes from a deep-sea virus and its host bacterium. The results quickly unveiled unambiguous substrate specificities, superior catalytic performance, and unique sequence preferences for two new restriction enzymes (capable of cleaving DNA) and two new methyltransferases (capable of modifying DNA with methyl groups). The reality of the functional R-M system reinforced a model of mutually beneficial interactions with the virus in the deep-sea microbial ecosystem. The cell culture-independent approach also holds great potential for exploring novel and biotechnologically significant R-M enzymes from microbial dark matter.


Subject(s)
Bacteria , DNA Restriction-Modification Enzymes , Host Microbial Interactions , Viruses , DNA , DNA Restriction Enzymes/chemistry , DNA Restriction-Modification Enzymes/genetics , Ecosystem , Methyltransferases , Oceans and Seas , Bacteria/genetics , Bacteria/virology , Viruses/genetics , Host Microbial Interactions/genetics
2.
ISME Commun ; 2(1): 108, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-37938718

ABSTRACT

The genus Nitratiruptor represents one of the most numerically abundant chemolithoautotrophic Campylobacterota populations in the mixing zones of habitats between hydrothermal fluids and ambient seawater in deep-sea hydrothermal environments. We isolated and characterized four novel temperate phages (NrS-2, NrS-3, NrS-4, and NrS-5) having a siphoviral morphology, infecting Nitratiruptor strains from the Hatoma Knoll hydrothermal field in the southern-Okinawa Trough, Japan, and conducted comparative genomic analyses among Nitratiruptor strains and their phages. The Nitratiruptor temperate phages shared many potential core genes (e.g., integrase, Cro, two structural proteins, lysozyme, and MazG) with each other despite their diverse morphological and genetic features. Some homologs of coding sequences (CDSs) of the temperate phages were dispersed throughout the non-prophage regions of the Nitratiruptor genomes. In addition, several regions of the phage genome sequences matched to spacer sequences within clustered regularly interspaced short palindromic repeats (CRISPR) in Nitratiruptor genomes. Moreover, a restriction-modification system found in a temperate phage affected an epigenetic feature of its host. These results strongly suggested a coevolution of temperate phages and their host genomes via the acquisition of temperate phages, the CRISPR systems, the nucleotide substitution, and the epigenetic regulation during multiple phage infections in the deep-sea environments.

3.
Mol Ecol Resour ; 18(6): 1444-1455, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30256532

ABSTRACT

The study of extracellular DNA viral particles in the ocean is currently one of the most advanced fields of research in viral metagenomic analysis. However, even though the intracellular viruses of marine microorganisms might be the major source of extracellular virus particles in the ocean, the diversity of these intracellular viruses is not well understood. Here, our newly developed method, referred to herein as fragmented and primer ligated dsRNA sequencing (flds) version 2, identified considerable genetic diversity of marine RNA viruses in cell fractions obtained from surface seawater. The RNA virus community appears to cover genome sequences related to more than half of the established positive-sense ssRNA and dsRNA virus families, in addition to a number of unidentified viral lineages, and such diversity had not been previously observed in floating viral particles. In this study, more dsRNA viral contigs were detected in host cells than in extracellular viral particles. This illustrates the magnitude of the previously unknown marine RNA virus population in cell fractions, which has only been partially assessed by cellular metatranscriptomics and not by contemporary viral metagenomic studies. These results reveal the importance of studying cell fractions to illuminate the full spectrum of viral diversity on Earth.


Subject(s)
Genetic Variation , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Viral/analysis , Seawater/virology , Aquatic Organisms/virology , Cell Fractionation , Japan , RNA Viruses/genetics , RNA, Viral/genetics
4.
Front Microbiol ; 9: 75, 2018.
Article in English | MEDLINE | ID: mdl-29467725

ABSTRACT

Previous studies on marine environmental virology have primarily focused on double-stranded DNA (dsDNA) viruses; however, it has recently been suggested that single-stranded DNA (ssDNA) viruses are more abundant in marine ecosystems. In this study, we performed a quantitative viral community DNA analysis to estimate the relative abundance and composition of both ssDNA and dsDNA viruses in offshore upper bathyal sediment from Tohoku, Japan (water depth = 500 m). The estimated dsDNA viral abundance ranged from 3 × 106 to 5 × 106 genome copies per cm3 sediment, showing values similar to the range of fluorescence-based direct virus counts. In contrast, the estimated ssDNA viral abundance ranged from 1 × 108 to 3 × 109 genome copies per cm3 sediment, thus providing an estimation that the ssDNA viral populations represent 96.3-99.8% of the benthic total DNA viral assemblages. In the ssDNA viral metagenome, most of the identified viral sequences were associated with ssDNA viral families such as Circoviridae and Microviridae. The principle components analysis of the ssDNA viral sequence components from the sedimentary ssDNA viral metagenomic libraries found that the different depth viral communities at the study site all exhibited similar profiles compared with deep-sea sediment ones at other reference sites. Our results suggested that deep-sea benthic ssDNA viruses have been significantly underestimated by conventional direct virus counts and that their contributions to deep-sea benthic microbial mortality and geochemical cycles should be further addressed by such a new quantitative approach.

5.
Proc Natl Acad Sci U S A ; 114(12): E2310-E2318, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265063

ABSTRACT

A DNA polymerase is encoded by the deep-sea vent phage NrS-1. NrS-1 has a unique genome organization containing genes that are predicted to encode a helicase and a single-stranded DNA (ssDNA)-binding protein. The gene for an unknown protein shares weak homology with the bifunctional primase-polymerases (prim-pols) from archaeal plasmids but is missing the zinc-binding domain typically found in primases. We show that this gene product has efficient DNA polymerase activity and is processive in DNA synthesis in the presence of the NrS-1 helicase and ssDNA-binding protein. Remarkably, this NrS-1 DNA polymerase initiates DNA synthesis from a specific template DNA sequence in the absence of any primer. The de novo DNA polymerase activity resides in the N-terminal domain of the protein, whereas the C-terminal domain enhances DNA binding.


Subject(s)
Bacteriophages/enzymology , DNA, Viral/genetics , DNA-Directed DNA Polymerase/metabolism , Viral Proteins/metabolism , Bacteriophages/chemistry , Bacteriophages/genetics , DNA Primers/genetics , DNA Primers/metabolism , DNA Replication , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , Protein Domains , Viral Proteins/chemistry , Viral Proteins/genetics
6.
Front Microbiol ; 7: 1261, 2016.
Article in English | MEDLINE | ID: mdl-27559333

ABSTRACT

The Japan Trench is located under the eutrophic Northwestern Pacific while the Mariana Trench that harbors the unique hadal planktonic biosphere is located under the oligotrophic Pacific. Water samples from the sea surface to just above the seafloor at a total of 11 stations including a trench axis station, were investigated several months after the Tohoku Earthquake in March 2011. High turbidity zones in deep waters were observed at most of the sampling stations. The small subunit (SSU) rRNA gene community structures in the hadal waters (water depths below 6000 m) at the trench axis station were distinct from those in the overlying meso-, bathy and abyssopelagic waters (water depths between 200 and 1000 m, 1000 and 4000 m, and 4000 and 6000 m, respectively), although the SSU rRNA gene sequences suggested that potential heterotrophic bacteria dominated in all of the waters. Potential niche separation of nitrifiers, including ammonia-oxidizing archaea (AOA), was revealed by quantitative PCR analyses. It seems likely that Nitrosopumilus-like AOAs respond to a high flux of electron donors and dominate in several zones of water columns including shallow and very deep waters. This study highlights the effects of suspended organic matter, as induced by seafloor deformation, on microbial communities in deep waters and confirm the occurrence of the distinctive hadal biosphere in global trench environments hypothesized in the previous study.

7.
Res Microbiol ; 166(9): 668-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26025640

ABSTRACT

Viruses play important roles in aquatic ecosystems, but deep-sea bacteriophages remain largely unexplored. A temperate bacteriophage (termed vB_PstS-1) was identified from the psychrotolerant gammaproteobacterium Pseudomonas stutzeri 1-1-1b, which was isolated from hadopelagic water (depth of 7000 m) of the Japan Trench in the Northwest Pacific Ocean. The genome size of PstS-1 was 48,666 bp; its genome displayed a 59.8% G + C content and a total of 79 coding sequences were identified in its genome. The PstS-1 phage belongs to the family Siphoviridae, but its genomic sequence and organization are distinct from those of any other well-known Siphoviridae phage. The mosaic genomic structure of PstS-1 suggests the occurrence of genetic exchange between distinct temperate phages in deep-sea Pseudomonas populations. The PstS-1 genome also harbors three distinct sequence regions corresponding to spacers within a single clustered regularly interspaced short palindromic repeat (CRISPR) locus in the rhizosphere-associated diazotrophic P. stutzeri A1501 genome. The extension of these spacers to the soil environment and the presence of many homologs of both the hadal deep-sea phage PstS-1 and terrestrial Pseudomonas phages suggest the early co-evolution of temperate phages and their host genus Pseudomonas prior to the divergence of their habitational and physiological adaptation.


Subject(s)
Pseudomonas Phages/genetics , Pseudomonas Phages/isolation & purification , Pseudomonas stutzeri/virology , Seawater/microbiology , Siphoviridae/isolation & purification , Genome, Viral , Genomics , Japan , Oceans and Seas , Phylogeny , Pseudomonas Phages/classification , Pseudomonas Phages/ultrastructure , Seawater/virology , Sequence Analysis, DNA , Siphoviridae/genetics
8.
Microbes Environ ; 30(2): 199-203, 2015.
Article in English | MEDLINE | ID: mdl-26004793

ABSTRACT

Metagenomic studies have revealed the unexplored diversity of the environmental virosphere. However, most studies are biased towards specific types of viral genomes due to the absence of universal methods to access all viral genome types. In the present study, we established a novel system to efficiently separate single- and double-stranded DNA/RNA viral genomes using hydroxyapatite and cellulose chromatography. This method will allow us to quantitatively and simultaneously access four types of viral genomes and will provide important clues to further understand previously unexplored environmental viral populations and obtain potentially unbiased libraries from environmental viral communities.


Subject(s)
Chromatography, Liquid/methods , Metagenomics/methods , Nucleic Acids/chemistry , Nucleic Acids/isolation & purification , Virology/methods , Viruses/genetics , Viruses/isolation & purification , Genome, Viral
9.
Extremophiles ; 19(1): 49-58, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25354565

ABSTRACT

A temperate phage (termed AmM-1) was identified from the psychrotolerant Rhizobiales bacterium Aurantimonas sp. C5-1, which was isolated from bathypelagic water (water depth = 1,500 m) in the northwest Pacific. The AmM-1 genome is 47,800 bp in length and contains 67 coding sequences. Although phage AmM-1 morphologically belongs to the family Myoviridae, its genomic structure, particularly modular genome organization, is similar to that of lambda-type phages of Siphoviridae. Genetic and phylogenetic analyses of the structural core genes also revealed that AmM-1 has a mosaic genomic structure that includes a lambda-like head (Siphoviridae) and P2-like tail (Myoviridae). The sequences of the structural core genes of AmM-1 are distinct from those of previously characterized phage groups but similar to those of recently identified one prophage element and one phage of marine Rhizobiales bacteria: a potential prophage element in the marine psychrotolerant Aureimonas ureilytica DSM 18598 genome and the temperate phage RR-1A infecting Rhizobium radiobacter P007 isolated from deep subseafloor sediment. The mosaic genome structure of AmM-1 suggests the occurrence of genetic exchange between distinct temperate phages in marine Rhizobiales populations.


Subject(s)
Bacteriophages/genetics , Phylogeny , Rhizobium/virology , Seawater/microbiology , Bacteriophages/physiology , Genes, Viral , Genome, Viral , Genomics , Microscopy, Electron, Transmission , Prophages , Temperature , Water Microbiology
10.
FEMS Microbiol Ecol ; 88(1): 60-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24308555

ABSTRACT

We studied the relationship between viral particle and microbial cell abundances in marine subsurface sediments from three geographically distinct locations in the continental margins (offshore of the Shimokita Peninsula of Japan, the Cascadia Margin off Oregon, and the Gulf of Mexico) and found depth variations in viral abundances among these sites. Viruses in sediments obtained offshore of the Shimokita and in the Cascadia Margin generally decreased with increasing depth, whereas those in sediments from the Gulf of Mexico were relatively constant throughout the investigated depths. In addition, the abundance ratios of viruses to microbial cells notably varied among the sites, ranging between 10(-3) and 10(1) . The subseafloor viral abundance offshore of the Shimokita showed a positive relationship with the microbial cell abundance and the sediment porosity. In contrast, no statistically significant relationship was observed in the Cascadia Margin and the Gulf of Mexico sites, presumably due to the long-term preservation of viruses from enzymatic degradation within the low-porosity sediments. Our observations indicate that viral abundance in the marine subsurface sedimentary environment is regulated not only by in situ production but also by the balance of preservation and decay, which is associated with the regional sedimentation processes in the geological settings.


Subject(s)
Geologic Sediments/virology , Viruses/isolation & purification , Ecosystem , Geologic Sediments/chemistry , Geological Phenomena , Japan , Mexico , Oregon , Pacific Ocean
11.
Extremophiles ; 17(3): 405-19, 2013 May.
Article in English | MEDLINE | ID: mdl-23512119

ABSTRACT

Epsilonproteobacteria are among the predominant primary producers in deep-sea hydrothermal vent ecosystems. However, phages infecting deep-sea vent Epsilonproteobacteria have never been isolated and characterized. Here, we successfully isolated a novel temperate phage, NrS-1, that infected a deep-sea vent chemolithoautotrophic isolate of Epsilonproteobacteria, Nitratiruptor sp. SB155-2, and its entire genome sequence was obtained and analyzed. The NrS-1 genome is linear, circularly permuted, and terminally redundant. The NrS-1 genome is 37,159 bp in length and contains 51 coding sequences. Five major structural proteins including major capsid protein and tape measure protein were identified by SDS-PAGE and mass spectrometry analysis. NrS-1 belongs to the family Siphoviridae, but its sequence and genomic organization are distinct from those of any other previously known Siphoviridae phages. Homologues of genes encoded in the NrS-1 genome were widely distributed among the genomes of diverse Epsilonproteobacteria. The distribution patterns had little relation to the evolutionary traits and ecological and physiological differentiation of the host epsilonproteobacterial species. The widespread occurrence of phage genes in diverse Epsilonproteobacteria supports early co-evolution between temperate phages and Epsilonproteobacteria prior to the divergence of their habitats and physiological adaptation.


Subject(s)
Epsilonproteobacteria/genetics , Evolution, Molecular , Genes, Viral , Hydrothermal Vents/microbiology , Siphoviridae/genetics , Adaptation, Physiological/genetics , Capsid Proteins/genetics , Ecosystem , Epsilonproteobacteria/virology , Genes, Bacterial , Hydrothermal Vents/virology , Phylogeny , Seawater/microbiology , Seawater/virology
12.
Microbes Environ ; 27(4): 350-5, 2012.
Article in English | MEDLINE | ID: mdl-23047146

ABSTRACT

Host-like genes are often found in viral genomes. To date, multiple host-like genes involved in photosynthesis and the pentose phosphate pathway have been found in phages of marine cyanobacteria Synechococcus and Prochlorococcus. These gene products are predicted to redirect host metabolism to deoxynucleotide biosynthesis for phage replication while maintaining photosynthesis. A cyanophage, Ma-LMM01, infecting the toxic cyanobacterium Microcystis aeruginosa, was isolated from a eutrophic freshwater lake and assigned as a member of a new lineage of the Myoviridae family. The genome encodes a host-like NblA. Cyanobacterial NblA is known to be involved in the degradation of the major light harvesting complex, the phycobilisomes. Ma-LMM01 nblA gene showed an early expression pattern and was highly transcribed during phage infection. We speculate that the co-option of nblA into Microcystis phages provides a significant fitness advantage to phages by preventing photoinhibition during infection and possibly represents an important part of the co-evolutionary interactions between cyanobacteria and their phages.


Subject(s)
Bacterial Proteins/genetics , Bacteriophages/genetics , Microcystis/virology , Bacteriophages/physiology , Biological Evolution , Fresh Water/microbiology , Fresh Water/virology , Genome, Viral , Myoviridae/genetics , Myoviridae/isolation & purification , Phycobilisomes/metabolism
13.
Appl Environ Microbiol ; 78(5): 1311-20, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22210205

ABSTRACT

Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Cell Adhesion , Hydrothermal Vents/microbiology , Hydrothermal Vents/virology , Plankton/virology , Viruses/isolation & purification , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Biota , Cell Count , Cluster Analysis , Metagenome , Molecular Sequence Data , Phylogeny , Seawater/microbiology , Seawater/virology , Sequence Analysis, DNA , Viral Load , Viruses/classification , Viruses/genetics
14.
Microbes Environ ; 25(3): 211-5, 2010.
Article in English | MEDLINE | ID: mdl-21576874

ABSTRACT

The aim of this study was to develop a quantitative real-time reverse transcription-PCR (real-time RT-PCR) assay to detect and quantify mRNA of cyanophages within infected Microcystis aeruginosa cells in a freshwater pond. Laboratory-based data showed that the relative abundance of the cyanophage g91 mRNA within host cells increased before cyanophage numbers increased in culture. This transcriptional pattern indicated the kinetics of the viral infection suggesting the real-time RT-PCR method to be a potential tool for environmental monitoring of cyanophage infections. In this field survey, the numbers of infected M. aeruginosa cell populations estimated from cyanophage numbers were low at 0.01-2.9 cells mL(-1). The highest relative abundance of phage g91 RNA (10(-2) per rnpB transcript) was at about the same levels of expression as laboratory-based growth data for Ma-LMM01 (estimated density of infected host cells: 10(5) cells mL(-1)); and was observed when cyanophage numbers rapidly increased (as well as a decrease in host cell numbers). Quantification of cyanophage numbers is important to understand ecological relationships between the phage and its hosts. Our data suggest the quantification of phage gene transcripts within a natural host cell population to be a strong tool for investigating the quantitative effects of phage lysis during infection of the host population.


Subject(s)
Bacteriophages/growth & development , Fresh Water/microbiology , Microcystis/virology , RNA, Messenger/biosynthesis , RNA, Viral/biosynthesis , Bacteriophages/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Transcription, Genetic , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...