Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34947705

ABSTRACT

Direct writing of cobalt/cobalt oxide composites has attracted attention for its potential use in catalysts and detectors in microsensors. In this study, cobalt-based composite patterns were selectively formed on glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET) substrates via the femtosecond laser reductive sintering of Co3O4 nanoparticles in an ambient atmosphere. A Co3O4 nanoparticle ink, including the nanoparticles, ethylene glycol as a reductant, and polyvinylpyrrolidone as a dispersant, was spin-coated onto the substrates. Near-infrared femtosecond laser pulses were then focused and scanned across the ink films to form the patterns. The non-sintered nanoparticles were subsequently removed from the substrate. The resulting sintered patterns were found to be made up of Co/CoO composites on the glass substrates, utilizing various pulse energies and scanning speeds, and the Co/CoO/Co3O4 composites were fabricated on both the PEN and PET substrates. These results suggest that the polymer substrates with low thermal resistance react with the ink during the reductive sintering process and oxidize the patterns more easily compared with the patterns on the glass substrates. Such a direct writing technique of cobalt/cobalt oxide composites is useful for the spatially selective printing of catalysts and detectors in functional microsensors.

2.
Materials (Basel) ; 14(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198689

ABSTRACT

In this paper, we report the effect of inert gas injection on Cu patterning generated by femtosecond laser reductive sintering of CuO nanoparticles (NPs). Femtosecond laser reductive sintering for metal patterning has been restricted to metal and metal-oxide composite materials. By irradiating CuO-nanoparticle paste with femtosecond laser pulses under inert gas injection, we intended to reduce the generation of metal oxides in the formed patterns. In an experimental evaluation, the X-ray diffraction peaks corresponding to copper oxides, such as CuO and Cu2O, were much smaller under N2 and Ar gas injections than under air injection. Increasing the injection rates of both gases increased the reduction degree of the X-ray diffraction peaks of the CuO NPs, but excessively high injection rates (≥100 mL/min) significantly decreased the surface density of the patterns. These results qualitatively agreed with the ratio of sintered/melted area. The femtosecond laser reductive sintering under inert gas injection achieved a vacuum-free direct writing of metal patterns.

3.
Materials (Basel) ; 14(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065930

ABSTRACT

In this work, the method of selective laser reductive sintering was used to fabricate the sensor-active copper and nickel microstructures on the surface of glass-ceramics suitable for non-enzymatic detection of glucose. The calculated sensitivities for these microsensors are 1110 and 2080 µA mM-1·cm-2 for copper and nickel, respectively. Linear regime of enzymeless glucose sensing is provided between 0.003 and 3 mM for copper and between 0.01 and 3 mM for nickel. Limits of glucose detection for these manufactured micropatterns are equal to 0.91 and 2.1 µM for copper and nickel, respectively. In addition, the fabricated materials demonstrate rather good selectivity, long-term stability and reproducibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...