Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dysphagia ; 38(3): 965-972, 2023 06.
Article in English | MEDLINE | ID: mdl-36127446

ABSTRACT

Dysphagia is sometimes accompanied by pain. Because orofacial structures subserve mastication and swallowing, orofacial pain might impair both functions. Tongue biting can occur not only accidentally while eating but also in some pathological conditions. However, it remains unclear whether noxious mechanical stimulation of the tongue affects swallowing. To explore this question, we evaluated the effects of lingual pinch stimulation on the initiation of swallowing evoked by distilled water (DW) infusion with a flow rate of 5.0 µL/s for 20 s into the pharyngolaryngeal region in anesthetized rats. The swallowing reflex was identified by electromyographic (EMG) bursts in the suprahyoid muscles which include the anterior belly of the digastric muscle, mylohyoid and geniohyoid muscles, and laryngeal elevation by visual inspection. The number of DW-evoked swallows during pinch stimulation was significantly smaller than that in a control condition or during pressure stimulation. The onset latency of the first swallow during pinch stimulation was significantly longer than that in the control condition. DW-evoked swallowing was almost abolished following bilateral transection of the superior laryngeal nerve (SLN) compared with the control condition, suggesting that the SLN plays a crucial role in the initiation of DW-evoked swallowing. Finally, electrophysiological data indicated that some SLN-responsive neurons in the nucleus tractus solitarii (nTS) exhibited delayed latency from a single SLN stimulation during lingual pinch stimulation. These results suggest that noxious mechanical stimulation of the tongue inhibits the initiation of swallowing and modulates neuronal activity in the nTS.


Subject(s)
Deglutition Disorders , Deglutition , Rats , Animals , Deglutition/physiology , Rats, Sprague-Dawley , Water , Tongue , Electric Stimulation/methods , Reflex/physiology , Electromyography
2.
Am J Physiol Gastrointest Liver Physiol ; 319(5): G564-G572, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32878469

ABSTRACT

Capsaicin powerfully evokes the swallowing reflex and is a known therapeutic agent for improving dysphagia and preventing aspiration pneumonia. However, the role of capsaicin-sensitive nerves in the initiation of swallowing evoked by various natural stimuli remains unclear. To explore this question, we blocked laryngeal capsaicin-sensitive nerves following the coapplication of QX-314 and capsaicin (QX/Cap), and investigated the effects on swallowing evoked by mechanical and chemical stimulation in anesthetized rats. Swallows were evoked by capsaicin, carbonated water (CW), distilled water (DW), and punctate mechanical stimulation using von Frey filaments applied topically to the larynx. Swallows were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles. The initiation of swallowing by capsaicin was strongly suppressed at 5 min following QX/Cap treatment and returned in a time-dependent manner. CW-evoked swallows at 5 min following QX/Cap treatment were significantly diminished compared with before and 30 min after treatment. In contrast, DW-evoked and mechanically evoked swallows were unchanged by QX/Cap treatment. Furthermore, CW-evoked swallows were virtually abolished by transection of the superior laryngeal nerves and significantly decreased by the topical application of acid-sensing ion channel-3 (ASIC3) inhibitor APETx2, but they were not affected by the nonselective transient receptor potential channel inhibitor ruthenium red or the ASIC1 inhibitor mambalgin-1. Taken together, we speculate that capsaicin-sensitive nerves play an important role in the initiation of CW-evoked swallows.NEW & NOTEWORTHY The initiation of swallowing evoked by laryngeal capsaicin and carbonated water application was diminished by the coapplication of QX-314 and capsaicin. Carbonated water-evoked swallows were also abolished by transection of the superior laryngeal nerves and were inhibited by the acid-sensing ion channel-3 inhibitor. Capsaicin-sensitive nerves are involved in the initiation of carbonated water-evoked swallows.


Subject(s)
Capsaicin/pharmacology , Carbonated Water , Deglutition/drug effects , Laryngeal Nerves/drug effects , Acid Sensing Ion Channels/drug effects , Anesthesia , Animals , Deglutition Disorders , Electromyography , Male , Physical Stimulation , Rats , Rats, Sprague-Dawley
3.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G412-G419, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32755305

ABSTRACT

A major component of gastric acid is hydrochloric acid (HCl), which can activate transient receptor potential vanilloid 1 (TRPV1). In the present study, we investigated how sustained laryngeal TRPV1 activation affects the frequency of the swallowing reflex. Experiments were carried out on 85 male Sprague-Dawley rats. The effects of short and sustained application of chemicals (3 µl of 0.1 N HCl or capsaicin) on the frequency of swallowing and on time-dependent changes in the occurrence of swallowing evoked by supralaryngeal nerve stimulation were determined. To evaluate vascular permeability of the larynx, Evans blue dye was intravenously injected after 5 or 60 min of sustained TRPV1 activation. SB366791 (a TRPV1 inhibitor) and Cap/QX-314 (a TRPV1-expressed neuronal inhibitor) significantly inhibited HCl/capsaicin-induced swallowing, but air flow-induced swallowing was not affected. Although the number of air flow-induced swallows followed by capsaicin stimulation was not affected within 5 min, it was significantly reduced by 60-min capsaicin or HCl application. The swallowing threshold associated with supralaryngeal nerve stimulation did not significantly change throughout the recording period. Evans blue dye concentrations in the larynx were significantly higher at 60 min in the 10-5 M capsaicin group than in the control group. Our results suggest that sustained TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors, which may be attributed to increases in vascular permeability and edema, as part of an inflammatory process.NEW & NOTEWORTHY Although a transient receptor potential vanilloid 1 (TRPV1) inhibitor or TRPV1-expressed neuronal inhibitor significantly inhibited HCl/capsaicin-evoked swallowing, air flow-induced swallowing was not affected. The number of air flow-induced swallows was significantly reduced within 60 min of TRPV1 activation. Evans blue dye concentration in the larynx increased 60 min after capsaicin application. TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors caused by increases in vascular permeability and edema.


Subject(s)
Anesthesia , Deglutition/drug effects , Larynx/metabolism , TRPV Cation Channels/agonists , Anilides/pharmacology , Animals , Capillary Permeability , Capsaicin/pharmacology , Cinnamates/pharmacology , Electric Stimulation , Laryngeal Nerves/physiology , Male , Mechanoreceptors/drug effects , Physical Stimulation , Radiation , Rats , Rats, Sprague-Dawley , TRPV Cation Channels/antagonists & inhibitors
4.
J Physiol ; 597(11): 2949-2963, 2019 06.
Article in English | MEDLINE | ID: mdl-31032906

ABSTRACT

KEY POINTS: Afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows in anaesthetized rats. Amiloride and its analogues inhibit swallowing evoked by mechanical stimulation, but not swallowing evoked by chemical and electrical stimulation. The epithelial sodium channel is probably involved in the initiation of laryngeal mechanically evoked swallows. ABSTRACT: The swallowing reflex plays a critical role in airway protection. Because impaired laryngeal mechanosensation is associated with food bolus aspiration, it is important to know how the laryngeal sensory system regulates swallowing initiation. This study was performed to clarify the neuronal mechanism of mechanically evoked swallows. Urethane-anaesthetized Sprague-Dawley male rats were used. A swallow was identified by activation of the suprahyoid and thyrohyoid muscles on electromyography. The swallowing threshold was measured by von Frey filament and electrical stimulation of the larynx. The number of swallows induced by upper airway distension and capsaicin application (0.03 nmol, 3 µl) to the vocal folds was counted. The effects of topical application (0.3-30 nmol, 3 µl) of the epithelial sodium channel (ENaC) blocker amiloride and its analogues (benzamil and dimethylamiloride), acid-sensing ion channel (ASIC) inhibitors (mambalgine-1 and diminazene) and gadolinium to the laryngeal mucosa on swallowing initiation were evaluated. A nerve transection study indicated that afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows. The mechanical threshold of swallowing was increased in a dose-dependent manner by amiloride and its analogues and gadolinium, but not by ASIC inhibitors. The number of swallows by upper airway distension was significantly decreased by benzamil application. However, the initiation of swallows evoked by capsaicin and electrical stimulation was not affected by benzamil application. We speculate that the ENaC is involved in the initiation of laryngeal mechanically evoked swallows.


Subject(s)
Deglutition/physiology , Epithelial Sodium Channels/physiology , Larynx/physiology , Animals , Electromyography , Laryngeal Nerves/physiology , Male , Muscle, Skeletal/physiology , Rats, Sprague-Dawley
5.
Brain Res ; 1694: 19-28, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29730058

ABSTRACT

This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 s. In the middle 10 s, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-s periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-s SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed.


Subject(s)
Anesthesia , Deglutition/physiology , Laryngeal Nerves/physiology , Reflex/physiology , Animals , Cerebral Cortex/physiology , Electric Stimulation/methods , Electromyography/methods , Jaw/physiology , Male , Rabbits
6.
J Appl Physiol (1985) ; 124(5): 1148-1154, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29357492

ABSTRACT

Swallowing pressure generation is important to ensure safe transport of an ingested bolus without aspiration or leaving residue in the pharynx. To clarify the mechanism, we measured swallowing pressure at the oropharynx (OP), upper esophageal sphincter (UES), and cervical esophagus (CE) using a specially designed manometric catheter in anesthetized rats. A swallow, evoked by punctate mechanical stimulation to the larynx, was identified by recording activation of the suprahyoid and thyrohyoid muscles using electromyography (EMG). Areas under the curve of the swallowing pressure at the OP, UES, and CE from two trials indicated high intrasubject reproducibility. Effects of transecting the hypoglossal nerve (12N) and recurrent laryngeal nerve (RLN) on swallowing were investigated. Following bilateral hypoglossal nerve transection (Bi-12Nx), OP pressure was significantly decreased, and time intervals between peaks of thyrohyoid EMG bursts and OP pressure were significantly shorter. Decreased OP pressure and shortened times between peaks of thyrohyoid EMG bursts and OP pressure following Bi-12Nx were significantly increased and longer, respectively, after covering the hard and soft palates with acrylic material. UES pressure was significantly decreased after bilateral RLN transection compared with that before transection. These results suggest that the 12N and RLN play crucial roles in OP and UES pressure during swallowing, respectively. We speculate that covering the palates with a palatal augmentation prosthesis may reverse the reduced swallowing pressure in patients with 12N or tongue damage by the changes of the sensory information and of the contact between the tongue and a palates. NEW & NOTEWORTHY Hypoglossal nerve transection reduced swallowing pressure at the oropharynx. Covering the hard and soft palates with acrylic material may reverse the reduced swallowing function caused by hypoglossal nerve damage. Recurrent laryngeal nerve transection reduced upper esophageal sphincter negative pressure during swallowing.


Subject(s)
Deglutition/physiology , Hypoglossal Nerve/physiology , Recurrent Laryngeal Nerve/physiology , Animals , Electromyography/methods , Esophagus/innervation , Esophagus/physiology , Larynx/physiology , Male , Oropharynx/innervation , Oropharynx/physiology , Pharynx/innervation , Pharynx/physiology , Pressure , Rats , Reproducibility of Results , Tongue/innervation , Tongue/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...