Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 39: 101746, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38910870

ABSTRACT

Dermal fibroblasts play a crucial role in skin structure and function by producing hyaluronic acid. Piceatannol (PIC), a polyphenol abundant in passion fruit seeds, has been reported to activate sirtuin 1 (SIRT1). Clinical trials have demonstrated that PIC intake improves skin moisture and maintains skin elasticity, yet the underlying mechanism remains unclear. This study aimed to investigate the effects of PIC on hyaluronic acid biosynthesis and the involvement of SIRT1 in this process. Human dermal fibroblast Hs68 cells were stimulated with PIC, and the expression levels of HAS2 and HYAL2, key enzymes in hyaluronic acid biosynthesis, as well as SIRT1 expression, were assessed using quantitative real-time PCR. Additionally, the role of SIRT1 in the hyaluronic acid biosynthesis pathway during PIC stimulation was examined using a SIRT1 inhibitor. The results demonstrated that PIC increased HAS2 expression while decreasing HYAL2 expression in human dermal fibroblasts. Furthermore, PIC enhanced SIRT1 expression, and pre-treatment with a SIRT1 inhibitor mitigated PIC-induced upregulation of HAS2, suggesting that PIC promotes hyaluronic acid synthesis by inducing SIRT1. These findings suggest that PIC could serve as a beneficial food ingredient, enhancing skin structure and function by promoting hyaluronic acid biosynthesis via SIRT1 induction.

2.
Biomolecules ; 12(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35053238

ABSTRACT

Atherosclerosis is considered the major cause of cardiovascular and cerebrovascular diseases, which are the leading causes of death worldwide. Excessive nitric oxide production and inflammation result in dysfunctional vascular endothelial cells, which are critically involved in the initiation and progression of atherosclerosis. The present study aimed to identify a bioactive compound from Jerusalem artichoke leaves with anti-inflammatory activity that might prevent atherosclerosis. We isolated bioactive heliangin that inhibited NO production in LPS-induced macrophage-like RAW 264.7 cells. Heliangin suppressed ICAM-1, VCAM-1, E-selectin, and MCP-1 expression, as well as NF-κB and IκBα phosphorylation, in vascular endothelial cells stimulated with TNF-α. These results suggested that heliangin suppresses inflammation by inhibiting excessive NO production in macrophages and the expression of the factors leading to the development of atherosclerosis via the NF-κB signaling pathway in vascular endothelial cells. Therefore, heliangin in Jerusalem artichoke leaves could function in the prevention of atherosclerosis that is associated with heart attacks and strokes.


Subject(s)
Atherosclerosis , Endothelial Cells/metabolism , Helianthus/chemistry , Lactones , Plant Leaves/chemistry , Sesquiterpenes , Signal Transduction/drug effects , Animals , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Lactones/chemistry , Lactones/pharmacology , Mice , RAW 264.7 Cells , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...