Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 116(12): 1295-1304, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37755530

ABSTRACT

Family Chrysopidae is known to harbor specific gut yeasts. However, no studies have been conducted outside of a limited number of these green lacewing species, and the diversity of yeasts in the family as a whole is not known. Therefore, we collected 58 Chrysopidae adults (9 species, 6 genera, 2 subfamilies) in Japan and isolated yeasts from all individuals. The results showed for the first time that not only subfamily Chrysopinae but also subfamily Apochrysinae have gut yeasts. We obtained 58 yeast isolates (one from each host individual), all of which were of the genus Metschnikowia. 28S rDNA- and ITS-based phylogenetic analysis showed that the isolates were divided into three clades, designated clade I, II, and III. Clade I contains two previously described Chrysopidae gut yeasts (M. picachoensis and M. pimensis) as well as a one of our new species named M. shishimaru. Clade II is a new clade, with at least two new species named M. kenjo and M. seizan. Clade III contains the previously described species M. noctiluminum, a Chrysopidae gut yeast, and one of our isolate (We have not described it as new species). However, the phylogenetic relationship between our isolate and M. noctiluminum was unclear. These results indicate that the Japanese Chrysopidae gut yeasts consist mainly of three undescribed species and that they are more unique than those found in previous surveys. The results of this study indicate that Chrysopidae gut yeasts are more diverse than previously thought and should be investigated in various geographical regions in the future.


Subject(s)
Metschnikowia , Porifera , Humans , Animals , Metschnikowia/genetics , Phylogeny , Japan , Yeasts/genetics
2.
Antonie Van Leeuwenhoek ; 115(12): 1421-1436, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36327002

ABSTRACT

Species in the genera Sirobasidium and Sirotrema (Tremellales, Tremellomycetes, Agaricomycotina, Basidiomycota) have been described based solely on the morphology of teleomorph, and many of them lack both isolates of anamorphic yeast state and nucleotide sequence data. Strains of Sirotrema translucens and Sirobasidium japonicum were established for the first time from basidiocarps collected in Japan. Also, an undescribed species in the genus Sirobasidium was isolated. Sirobasidium sp. was characterized by its apiculate epibasidia and 2-celled basidia divided by a longitudinal septum, which is a unique combination of characteristics in the genus. Although the phylogenetic placement of Sb. japonicum within the Tremellales was not resolved in our analysis, Sirobasidium sp. formed a well-supported monophyletic clade with Sb. magnum and Fibulobasidium spp., and Sirotrema translucens was located in the genus Phaeotremella. Mating experiments using single-basidiospore strains showed that Sb. japonicum produced basidia, epibasidia, and basidiospores on a nutrient-poor medium, and the life cycle was successfully completed in controlled conditions. In conclusion, we propose Sirobasidium apiculatum sp. nov. and Phaeotremella translucens comb. nov.


Subject(s)
Basidiomycota , Basidiomycota/genetics , Fungi , Japan , Phylogeny , Spores, Fungal
3.
J Exp Biol ; 225(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36226701

ABSTRACT

Organisms can generally be divided into two nutritional groups: generalists that consume various types of food and specialists that consume specific types of food. However, it remains unclear how specialists adapt to only limited nutritional conditions in nature. In this study, we addressed this question by focusing on Drosophila fruit flies. The generalist Drosophila melanogaster can consume a wide variety of foods that contain high glucose levels. In contrast, the specialist Drosophila sechellia consumes only the Indian mulberry, known as noni (Morinda citrifolia), which contains relatively little glucose. We showed that the lifespan of D. sechellia was significantly shortened under a high-glucose diet, but this effect was not observed for D. melanogaster. In D. sechellia, a high-glucose diet induced disorganization of the gut epithelia and visceral muscles, which was associated with abnormal digestion and constipation. RNA-sequencing analysis revealed that many immune-responsive genes were suppressed in the gut of D. sechellia fed a high-glucose diet compared with those fed a control diet. Consistent with this difference in the expression of immune-responsive genes, high glucose-induced phenotypes were restored by the addition of tetracycline or scopoletin, a major nutritional component of noni, each of which suppresses gut bacterial growth. We propose that, in D. sechellia, a high-glucose diet impairs gut immune function, which leads to a change in gut microbiota, disorganization of the gut epithelial structure and a shortened lifespan.


Subject(s)
Drosophila , Morinda , Animals , Drosophila/physiology , Drosophila melanogaster/physiology , Longevity , Diet , Morinda/chemistry , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...