Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 112: 109219, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36084541

ABSTRACT

Neuropathic pain caused by nerve injury presents with severe spontaneous pain and a range of comorbidities, including deficits in higher executive functioning, none of which are adequately treated with current analgesics. Interleukin-6 (IL-6), a proinflammatory cytokine, is critically involved in the development and maintenance of central sensitization. However, the roles of IL-6 in neuropathic pain and related comorbidities have yet to be fully clarified. The present study examined the effect of MR16-1, an anti-IL-6 receptor antibody and inhibits IL-6 activity, on allodynia and cognitive impairment in mice with neuropathic pain following partial sciatic nerve ligation (PSNL). Significant upregulation of IL-6 expression was observed in the hippocampus in PSNL mice. Intranasal administration of MR16-1 significantly improved cognitive impairment but not allodynia in PSNL mice. Intranasal MR16-1 blocked PSNL-induced degenerative effects on hippocampal neurons. Intraperitoneal administration of MR16-1 suppressed allodynia but not cognitive impairment of PSNL mice. The findings suggest that cognitive impairment associated with neuropathic pain is mediated through changes in hippocampus induced by IL-6. These data also suggest that IL-6 mediated peripheral inflammation underlies allodynia, and IL-6 mediated inflammation in the central nervous system underlies cognitive impairment associated with neuropathic pain, and further suggest the therapeutic potential of blocking IL-6 functioning by blocking its receptor.


Subject(s)
Neuralgia , Mice , Animals , Neuralgia/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Sciatic Nerve/injuries , Analgesics/therapeutic use , Ligation , Cytokines/metabolism , Inflammation/drug therapy
2.
Article in English | MEDLINE | ID: mdl-30763674

ABSTRACT

Clinical evidence indicates that major depression is a common comorbidity of chronic pain, including neuropathic pain. However, the cellular basis for chronic pain-mediated major depression remains unclear. High-mobility group box 1 protein (HMGB1) has a key role in innate immune responses and appears to be have a role in mediating diverse disorders, including neuropathic pain and depression. The current study aimed to characterize neuropathic pain-induced changes in affect over time and to determine whether HMGB1 has a role in neuropathic pain-induced changes in affect. Neuropathic pain was induced by partial sciatic nerve ligation (PSNL) in mice. Anxiodepressive-like behaviors in mice were evaluated over 10 weeks, in the social interaction, forced swim, and novelty suppressed feeding tests. Mice developed anxiodepressive-like behavior 6 to 8 weeks after induction of neuropathy. Accompanying anxiodepressive-like behavior, increased HMGB1 protein and microglia activation were observed in frontal cortex at 8 weeks after PSNL. Intracerebroventricular administration of rHMGB1 in naïve mice induced anxiodepressive-like behavior and microglia activation. Blockage of HMGB1 in PSNL mice with glycyrrhizic acid (GZA) or anti-HMGB1 antibody reduced microglia activation and anxiodepressive-like behavior. These results indicate that PSNL-induced anxiodepressive-like behavior is likely mediated by HMGB1. Furthermore, the data indicate that inhibition of HMGB1-dependent microglia activation could be a strategy for the treatment of depression associated with neuropathic pain.


Subject(s)
Behavior, Animal/drug effects , HMGB1 Protein/metabolism , Microglia/metabolism , Neuralgia/complications , Animals , Antibodies/pharmacology , Depression/chemically induced , Depression/complications , Glycyrrhizic Acid/pharmacology , HMGB1 Protein/administration & dosage , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/pharmacology , Infusions, Intraventricular , Ligation , Male , Mice , Microglia/drug effects , Sciatic Nerve/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...