Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Aquat Anim Health ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643364

ABSTRACT

OBJECTIVE: The use of computed tomography (CT) in aquarium animals, including elasmobranchs, has increased dramatically. To take advantage of CT, contrast medium is used to enhance internal organs and provide contrast since elasmobranchs lack visceral fat. In this study, the contrast effects of iopamidol were examined for up to 260 days after intravenous administration to establish the time course of the CT values for the target organs in eight mature Cloudy Catsharks Scyliorhinus torazame. METHODS: A micro-CT system was used to measure the CT values of the designated region of interest in the target organs (ventricular cavity, kidneys, liver, gallbladder, ovarian follicles, uterine horn cavity) over time and the eggs laid, following administration of iopamidol (700 mg of iodine/kg). RESULT: The CT values of the ventricular cavity and kidneys peaked at 30 min and showed low values after day 22. The CT values for the liver increased over time and peaked at day 200, whereas values for the gallbladder and ovarian follicles peaked on day 6, with the gallbladder showing a low value and the ovarian follicles still showing a high value on day 260. Computed tomography images with identifiable enhancement within bilateral uterine horns were followed from days 1 to 35. The mean and maximum CT values of yolk and jelly in eggs laid after day 30 were significantly higher than the values for eggs laid up to day 29; embryonic development was confirmed in 88.7% of the eggs. CONCLUSION: There was no mortality or morbidity of the sharks during the experiment, indicating that the administration of iopamidol at 700 mg of iodine/kg did not result in any adverse effects for 260 days. This is the first study to describe the long-term contrast effects of iopamidol, thus contributing new information about the application of contrast studies in Cloudy Catsharks.

2.
Can J Physiol Pharmacol ; 97(10): 909-915, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31100203

ABSTRACT

Molecular hydrogen (H2) showed protection against various kinds of oxidative-stress-related diseases. First, it was reported that the mechanism of therapeutic effects of H2 was antioxidative effect due to inhibition of the most cytotoxic reactive oxygen species, hydroxy radical (•OH). However, after chronic administration of H2 in drinking water, oxidative-stress-induced nerve injury is significantly attenuated even in the absence of H2. It suggests indirect signaling of H2 and gastrointestinal tract is involved. Indirect effects of H2 could be tested by giving H2 water only before nerve injury, as preconditioning. For example, preconditioning of H2 for certain a period (∼7 days) in Parkinson's disease model mice shows significant neuroprotection. As the mechanism of indirect effect, H2 in drinking water induces ghrelin production and release from the stomach via ß1-adrenergic receptor stimulation. Released ghrelin circulates in the body, being transported across the blood-brain barrier, activates its receptor, growth-hormone secretagogue receptor. H2-induced upregulation of ghrelin mRNA is also shown in ghrelin-producing cell line, SG-1. These observations help with understanding the chronic effects of H2 and raise intriguing preventive and therapeutic options using H2.


Subject(s)
Ghrelin/metabolism , Hydrogen/administration & dosage , Neurodegenerative Diseases/therapy , Neuroprotection/drug effects , Peripheral Nerve Injuries/therapy , Animals , Blood-Brain Barrier/metabolism , Disease Models, Animal , Drinking , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Ghrelin/blood , Humans , Neurodegenerative Diseases/blood , Oxidative Stress/drug effects , Peripheral Nerve Injuries/blood , Receptors, Ghrelin/metabolism , Signal Transduction/drug effects , Treatment Outcome , Water/chemistry
3.
Mol Microbiol ; 111(5): 1229-1244, 2019 05.
Article in English | MEDLINE | ID: mdl-30742332

ABSTRACT

Bacteria such as Escherichia coli must coordinate cell elongation and cell division. Elongation is regulated by an elongasome complex containing MreB actin and the transmembrane protein RodZ, which regulates assembly of MreB, whereas division is regulated by a divisome complex containing FtsZ tubulin. These complexes were previously thought to function separately. However, MreB has been shown to directly interact with FtsZ to switch to cell division from cell elongation, indicating that these complexes collaborate to regulate both processes. Here, we investigated the role of RodZ in the regulation of cell division. RodZ localized to the division site in an FtsZ-dependent manner. We also found that division-site localization of MreB was dependent on RodZ. Formation of a Z ring was delayed by deletion of rodZ, suggesting that division-site localization of RodZ facilitated the formation or stabilization of the Z ring during early cell division. Thus, RodZ functions to regulate MreB assembly during cell elongation and facilitates the formation of the Z ring during cell division in E. coli.


Subject(s)
Cell Division , Cytoskeletal Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/cytology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism
4.
Neurochem Res ; 42(9): 2658-2665, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28462451

ABSTRACT

Molecular hydrogen (H2), as a new medical gas, has protective effects in neurological disorders including Parkinson's disease (PD). In our previous report, the neuroprotective effect of drinking water with saturated H2 (H2 water) in PD mice might be due to stomach-brain interaction via release of gastric hormone, ghrelin. In the present study, we assessed the effect of H2-induced ghrelin more precisely. To confirm the contribution of ghrelin in H2 water-drinking PD model mice, ghrelin-knock out (KO) mice were used. Despite the speculation, the effect of H2 water was still observed in ghrelin-KO PD model mice. To further check the involvement of ghrelin, possible contribution of ghrelin-induced vagal afferent effect was tested by performing subdiaphragmatic vagotomy before treating with H2 water and administration of MPTP (1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine). The protective effect of H2 water was still observed in the vagotomized mice in substantia nigra, suggesting that stimulation of vagal afferent nerves is not involved in H2-induced neuroprotection. Other neuroprotective substitutes in ghrelin-KO mice were speculated because H2-induced neuroprotection was not cancelled by ghrelin receptor antagonist, D-Lys3 GHRP-6, in ghrelin-KO PD model mice, unlike in wild-type PD model mice. Our results indicate that ghrelin may not be the only factor for H2-induced neuroprotection and other factors can substitute the role of ghrelin when ghrelin is absent, raising intriguing options of research for H2-responsive factors.


Subject(s)
Brain/metabolism , Deuterium/administration & dosage , Gastric Mucosa/metabolism , Ghrelin/deficiency , Parkinsonian Disorders/metabolism , Animals , Brain/drug effects , Brain/pathology , Ghrelin/antagonists & inhibitors , Ghrelin/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/pathology , Stomach/drug effects , Vagotomy/methods , Vagus Nerve/metabolism , Vagus Nerve/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...