Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 131(4): 1219-1229, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34570639

ABSTRACT

To clarify the preventive effects of low-current electrical stimulation (ES) under blood flow restriction (Bfr) on diabetes-associated capillary regression in skeletal muscles, we assessed the changes in three-dimensional capillary architecture and angiogenic factors. Twenty-four Goto-Kakizaki rats were randomly divided into four groups: the sedentary diabetes mellitus (DM), Bfr (DM + Bfr), electrical stimulation (DM + ES), and Bfr plus ES (DM + Bfr + ES) groups. Six healthy Wistar rats were used as age-matched controls. Bfr was performed using pressure cuffs (80 mmHg) around the thighs of the rats, and low-current ES was applied to the calf muscles of the rats. The current intensity was set at 30% of the maximal isometric contraction (24-30 mA). The treatments were delivered three times a week for 8 wk. In the DM group, the capillary diameter and volume of the soleus muscle decreased, and, the antiangiogenic factor level increased. Furthermore, DM caused an increase in the hypoxia-inducible factor. Individually, Bfr or ES treatments failed to inhibit the DM-associated capillary regression and increase in antiangiogenic factor. However, combined treatment with Bfr and ES prevented DM-associated capillary regression via inhibition of the increased antiangiogenic factor and enhancement of interleukin-15 expression, mitochondrial biogenesis factors, and a proangiogenic factor. Therefore, DM-associated capillary regression inhibited by the combined treatment may prevent the effects of the increased antiangiogenic factor and enhance the proangiogenic factor.NEW & NOTEWORTHY The combined treatment of blood flow restriction and low intensity electrical stimulation attenuated type 2 diabetes (T2D)-associated capillary regression in the skeletal muscles. The treatment inhibits the T2D-associated increase in antiangiogenic factors via inhibition of intramuscular chronic hypoxia; it can inhibit intramuscular chronic hypoxia by enhancing proangiogenic factors. These results suggest that the combined treatment may be an effective therapeutic intervention for the prevention of T2D-associated capillary regression in the skeletal muscles.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Resistance Training , Animals , Diabetes Mellitus, Experimental/therapy , Electric Stimulation , Humans , Muscle, Skeletal , Rats , Rats, Wistar , Regional Blood Flow
2.
J Oleo Sci ; 69(11): 1487-1495, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33055443

ABSTRACT

Photoaged skin is characterized by the appearance of pigmented spots such as solar lentigos, deep wrinkles and sags, and progresses due to chronic sun exposure. Among the wavelengths of sunlight, UVA is responsible for the appearance of wrinkles and sags that originate from structural alterations in the dermis of photoaged skin such as the depletion of collagen fibers. Thus, improving and restoring collagen fibers is an effective approach to reduce skin photoaging and maintain a youthful appearance. This study was conducted to evaluate the potential of an extract of Ocimum basilicum (OC), which contains rosmarinic acid (RA), as an anti-photoaging material focusing on the capacity to restore collagen fibers that are disrupted due to intracellular oxidative stress. In spite of their relatively low capacities for chemical scavenging of reactive oxygen species (ROS), both OC and RA showed efficient removal of biological oxidative stress by reducing levels of intracellular ROS and carbonylated proteins (CPs) in fibroblasts following exposure to single or repetitive UVA irradiations. Fibroblasts irradiated with repetitive UVA as a model for chronic sun-exposed cells showed significant increases in matrix metalloproteinase-1 and decreases in type I collagen synthesis and formed reduced numbers of collagen fibers. Since both OC and RA restored the adverse phenomena caused by repetitive UVA irradiation, we conclude that OC containing RA is an effective anti-photoaging material.


Subject(s)
Cinnamates/pharmacology , Collagen/metabolism , Collagen/radiation effects , Depsides/pharmacology , Dermis/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Ocimum basilicum/chemistry , Plant Extracts/pharmacology , Skin Aging/drug effects , Ultraviolet Rays/adverse effects , Cells, Cultured , Cinnamates/isolation & purification , Depsides/isolation & purification , Fibroblasts/pathology , Humans , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Skin Aging/pathology , Rosmarinic Acid
3.
J Oleo Sci ; 69(7): 719-726, 2020.
Article in English | MEDLINE | ID: mdl-32612021

ABSTRACT

Residues of olive fruit (ROF) after the extraction of oils are an increasing source of industrial waste, because olive oil is becoming more popular as a healthy food. It has been reported that olives have some polyphenols that have an antioxidation capability. On the other hand, excess oxidative stress disrupts epidermal barrier function. This study was conducted to determine whether ROF could be utilized as an antioxidant source to reduce industrial wastes and to identify possible active materials to maintain healthy skin. Olive fruits are categorized into two groups depending on the time of harvest, young fruit (YF) and mature fruit (MF). Thus, we examined the antioxidant potentials of extracts from YF and from MF to remove reactive oxygen species (ROS) from biological and chemical aspects. HaCaT keratinocytes cultured with extracts of YF or MF had reduced levels of intracellular ROS in spite of the relatively low chemical capability against ROS scavenging. The biological effects of the YF extract were superior to those of the MF extract. The YF extract showed effective reductions of intracellular ROS and carbonylated proteins that were elevated by the stress-related hormone cortisol. In addition, the YF extract reinforced the intracellular antioxidation capability through the activation of Nrf2 signaling. Taken together, the YF extract was an effective source to reinforce the intracellular antioxidation capability. We conclude from these results that utilizing ROF would lead to the reduction of industrial wastes and would supply active materials to maintain healthy skin.


Subject(s)
Keratinocytes/metabolism , NF-E2-Related Factor 2/metabolism , Olea/chemistry , Oxidative Stress/drug effects , Oxidative Stress/genetics , Plant Extracts/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Antioxidants , Cells, Cultured , Humans , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism
4.
J Appl Physiol (1985) ; 127(5): 1288-1296, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31556832

ABSTRACT

This study aimed to clarify the effects of a combined treatment comprising blood flow restriction and low-current electrical stimulation on skeletal muscle hypertrophy in rats. Male Wistar rats were divided into control (Cont), blood flow restriction (Bfr), electrical stimulation (Es), or Bfr with Es (Bfr + Es) groups. Pressure cuffs (80 mmHg) were placed around the thighs of Bfr and Bfr + Es rats. Low-current Es was applied to calf muscles in the Es and Bfr + Es rats. In experiment 1, a 1-day treatment regimen (5-min stimulation, followed by 5-min rest) was delivered four times to study the acute effects. In experiment 2, the same treatment regimen was delivered three times/wk for 8 wk. Body weight, muscle mass, changes in maximal isometric contraction, fiber cross-sectional area of the soleus muscle, expression of phosphorylated and total-ERK1/2, phosphorylated-rpS6 Ser235/236, phosphorylated and total Akt, and phosphorylated-rpS6 Ser240/244 were measured. Bfr and Es treatment alone failed to induce muscle hypertrophy and increase the expression of phosphorylated rpS6 Ser240/244. Combined Bfr + Es upregulated muscle mass, increased the fiber cross-sectional area, and increased phosphorylated rpS6 Ser240/244 expression and phosphorylated rpS6 Ser235/236 expression compared with controls. Combined treatment with Bfr and low-current Es can induce muscle hypertrophy via activation of two protein synthesis signaling pathways. This treatment should be introduced for older patients with sarcopenia and others with muscle weakness.NEW & NOTEWORTHY We investigated the acute and chronic effect of low-current electrical stimulation with blood flow restriction on skeletal muscle hypertrophy and the mechanisms controlling the hypertrophic response. Low-current electrical stimulation could not induce skeletal muscle hypertrophy, but a combination treatment did. Blood lactate and growth hormone levels were increased in the early response. Moreover, activation of ERK1/2 and mTOR pathways were observed in both the acute and chronic response, which contribute to muscle hypertrophy.


Subject(s)
Electric Stimulation Therapy , Muscle, Skeletal/physiology , Sarcopenia/therapy , Animals , Electric Stimulation , Growth Hormone/blood , Hypertrophy , Isometric Contraction , Lactic Acid/blood , MAP Kinase Signaling System , Male , Muscle, Skeletal/blood supply , Rats, Wistar
5.
J Diabetes ; 11(4): 326-334, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30225988

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) results in decreased muscle mass and harmful complications. Blood flow restriction (Bfr) and electrical stimulation (ES) increase muscle protein synthesis. We hypothesized that combined Bfr and low-intensity ES may be more effective in preventing diabetes-associated muscle atrophy by inhibiting the downregulation of protein synthesis-related pathways. In this study, the effects of combined Bfr and low-intensity ES on diabetes-associated muscle atrophy were investigated by evaluating advanced glycation end-products (AGEs) and receptor for AGEs (RAGE) in rats. METHODS: Twenty-four Goto-Kakizaki (GK) rats were randomly divided into four treatment groups: sedentary DM, DM + Bfr (pressure cuffs placed around the thigh), DM + ES, and DM + Bfr + ES. Six Wistar rats were used as an age-matched control. Levels of AGEs and the expression of RAGE, extracellular signal-regulated kinase (ERK), and ribosomal protein S6 (rpS6) were determined in plantaris muscles. RESULTS: Diabetes resulted in a loss of muscle mass and upregulation of AGEs and RAGE in the plantaris muscle compared with the control group. Treatment with Bfr and ES alone failed to attenuate diabetes-associated loss of muscle mass, and could not prevent the upregulation of AGEs. However, the combination of Bfr and ES prevented the diabetes-associated decrease in muscle mass and upregulation of AGEs. In addition, the combination treatment prevented diabetes-associated decreases in the expression of phosphorylated rpS6. CONCLUSIONS: Combination treatment with Bfr and ES may prevent diabetes-associated muscle atrophy by upregulating inhibition of AGEs, which leads to the activation of protein synthesis.


Subject(s)
Diabetes Mellitus, Experimental/complications , Electric Stimulation/methods , Muscle, Skeletal/blood supply , Muscular Atrophy/therapy , Regional Blood Flow , Resistance Training/methods , Animals , Male , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Rats , Rats, Wistar , Recovery of Function
SELECTION OF CITATIONS
SEARCH DETAIL
...