Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 145(4): 044319, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27475373

ABSTRACT

Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I(-) ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I(-) and weak [U-H](-) ion signal upon photoexcitation. The action spectra show two bands for I(-) and [U-H](-) production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I(-) production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I(-) exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I(-)U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π(∗) excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I(-) production suggest that this channel results from internal conversion to the I(-) ⋅ U ground state followed by evaporation of I(-). This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations.

2.
Phys Chem Chem Phys ; 18(22): 15143-52, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27198464

ABSTRACT

Isolated molecular clusters of adenine, cytosine, thymine and uracil bound to hexachloroplatinate, PtCl6(2-), have been studied using laser electronic photodissociation spectroscopy to investigate photoactivation of a platinum complex in the vicinity of a nucleobase. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photochemical processes occurring in photodynamic platinum drug therapies that target DNA. This is the first study to explore the specific role of a strongly photoactive platinum compound in the aggregate complex. Each of the clusters studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.6 eV absorption band and a subsequent increase in the absorption intensity towards higher spectral-energy. The absorption bands are traced to ligand-to-metal-charge-transfer excitations on the PtCl6(2-) moiety within the cluster, and result in Cl(-)·nucleobase and PtCl5(-) as primary photofragments. These results demonstrate how selective photoexcitation can drive distinctive photodecay channels for a model photo-pharmaceutical. In addition, cluster absorption due to excitation of nucleobase-centred chromophores is observed in the region around 5 eV. For the uracil cluster, photofragments consistent with ultrafast decay of the excited state and vibrational predissociation on the ground-state surface are observed. However, this decay channel becomes successively weaker on going from thymine to cytosine to adenine, due to differential coupling of the excited states to the electron detachment continuum. These effects demonstrate the distinctive photophysical characteristics of the different nucleobases, and are discussed in the context of the recently recorded photoelectron spectra of theses clusters.


Subject(s)
Adenine/metabolism , Cisplatin/analogs & derivatives , Cytosine/metabolism , Radiation-Sensitizing Agents/pharmacology , Thymine/metabolism , Uracil/metabolism , Cisplatin/chemistry , Cisplatin/pharmacology , Lasers , Models, Molecular , Photochemical Processes , Radiation-Sensitizing Agents/chemistry , Ultraviolet Rays
3.
J Chem Phys ; 143(10): 101103, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26373991

ABSTRACT

We report the first UV laser photodissociation spectra of gas-phase I(-) ⋅ MI (M = Na, K, Cs) alkali halide anionic microclusters. The photodepletion spectra of these clusters display strong absorption bands just below the calculated vertical detachment energies, indicative of the presence of dipole-bound excited states. Photoexcitation at the peak of the transition to the dipole-bound excited state results in production of a primary [MI](-) photofragment along with a less intense I(-) ion. The photofragmentation mechanism of the excited state cluster is discussed in the context of an initial dipole-bound excited state that subsequently relaxes via a vibrational Feschbach resonance. The experiments described have been performed in an electrospray source laser-interfaced quadrupole ion-trap instrument and demonstrated for the first time that dipole-bound excited states can be identified in the relatively high-collision environment of a quadrupole ion-trap, in particular for systems with large dipole moments associated with the presence of charge separation. This indicates considerable potential for future experiments that identify dipole-bound excited states as a "low-resolution" structural probe of biomolecules and molecular charge separation using the instrumentation employed in this work.

4.
Phys Chem Chem Phys ; 16(29): 15490-500, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24949578

ABSTRACT

Isolated molecular clusters of adenine, cytosine, thymine and uracil with Pt(CN)6(2-) and Pt(CN)4(2-) were studied for the first time to characterize the binding and reactivity of isolated transition metal complex ions with nucleobases. These clusters represent model systems for understanding metal complex-DNA adducts, as a function of individual nucleobases. Collisional excitation revealed that the clusters decay on the ground electronic surface by either solvent evaporation (i.e. loss of a nucleobase unit from the cluster) or via proton transfer from the nucleobase to the dianion. The Pt(CN)6(2-)-nucleobase clusters decay only by solvent evaporation, while the Pt(CN)4(2-) clusters fragment by both pathways. The enhanced proton-transfer reactivity of Pt(CN)4(2-) is attributed to the higher charge-density of the ligands in this transition metal anion. % fragmentation curves of the clusters reveal that the adenine clusters display distinctively higher fragmentation onsets, which are traced to the propensity of adenine to form the shortest intercluster H-bond. We also present laser electronic photodissociation measurements for the Pt(CN)6(2-)·Ur, Pt(CN)4(2-)·Ur and Pt(CN)4(2-)·Ur2 clusters to illustrate the potential of exploring metal complex DNA photophysics as a function of nucleobase within well-defined gaseous clusters. The spectra reported herein represent the first such measurements. We find that the electronic excited states decay with production of the same fragments (associated with solvent evaporation and proton transfer) observed upon collisional excitation of the electronic ground state, indicating ultrafast deactivation of the excited-state uracil-localized chromophore followed by vibrational predissociation.


Subject(s)
Cyanides/chemistry , DNA/chemistry , Electrons , Lasers , Photochemistry , Platinum Compounds/chemistry , Solvents/chemistry , Adenine/chemistry , Cytosine/chemistry , Protons , Quantum Theory , Spectrophotometry, Infrared , Thymine/chemistry , Uracil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...