Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(27): 17778-84, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26084482

ABSTRACT

Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

2.
J Am Chem Soc ; 136(41): 14589-97, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25265412

ABSTRACT

New electron-acceptor materials are long sought to overcome the small photovoltage, high-cost, poor photochemical stability, and other limitations of fullerene-based organic photovoltaics. However, all known nonfullerene acceptors have so far shown inferior photovoltaic properties compared to fullerene benchmark [6,6]-phenyl-C60-butyric acid methyl ester (PC60BM), and there are as yet no established design principles for realizing improved materials. Herein we report a design strategy that has produced a novel multichromophoric, large size, nonplanar three-dimensional (3D) organic molecule, DBFI-T, whose π-conjugated framework occupies space comparable to an aggregate of 9 [C60]-fullerene molecules. Comparative studies of DBFI-T with its planar monomeric analogue (BFI-P2) and PC60BM in bulk heterojunction (BHJ) solar cells, by using a common thiazolothiazole-dithienosilole copolymer donor (PSEHTT), showed that DBFI-T has superior charge photogeneration and photovoltaic properties; PSEHTT:DBFI-T solar cells combined a high short-circuit current (10.14 mA/cm(2)) with a high open-circuit voltage (0.86 V) to give a power conversion efficiency of 5.0%. The external quantum efficiency spectrum of PSEHTT:DBFI-T devices had peaks of 60-65% in the 380-620 nm range, demonstrating that both hole transfer from photoexcited DBFI-T to PSEHTT and electron transfer from photoexcited PSEHTT to DBFI-T contribute substantially to charge photogeneration. The superior charge photogeneration and electron-accepting properties of DBFI-T were further confirmed by independent Xenon-flash time-resolved microwave conductivity measurements, which correctly predict the relative magnitudes of the conversion efficiencies of the BHJ solar cells: PSEHTT:DBFI-T > PSEHTT:PC60BM > PSEHTT:BFI-P2. The results demonstrate that the large size, multichromophoric, nonplanar 3D molecular design is a promising approach to more efficient organic photovoltaic materials.


Subject(s)
Electric Power Supplies , Imides/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Solar Energy , Fullerenes/chemistry , Molecular Structure , Photochemical Processes , Quantum Theory
3.
J Am Chem Soc ; 134(46): 19035-42, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23148528

ABSTRACT

State-of-the-art low band gap conjugated polymers have been investigated for application in organic photovoltaic cells (OPVs) to achieve efficient conversion of the wide spectrum of sunlight into electricity. A remarkable improvement in power conversion efficiency (PCE) has been achieved through the use of innovative materials and device structures. However, a reliable technique for the rapid screening of the materials and processes is a prerequisite toward faster development in this area. Here we report the realization of such a versatile evaluation technique for bulk heterojunction OPVs by the combination of time-resolved microwave conductivity (TRMC) and submicrosecond white light pulse from a Xe-flash lamp. Xe-flash TRMC allows examination of the OPV active layer without requiring fabrication of the actual device. The transient photoconductivity maxima, involving information on generation efficiency, mobility, and lifetime of charge carriers in four well-known low band gap polymers blended with phenyl-C(61)-butyric acid methyl ester (PCBM), were confirmed to universally correlate with the PCE divided by the open circuit voltage (PCE/V(oc)), offering a facile way to predict photovoltaic performance without device fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...