Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(23): 234001, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905672

ABSTRACT

Direct numerical simulation of homogeneous isotropic turbulence shows pronounced clustering of inertial particles in the inertial subrange at high Reynolds number, in addition to the clustering typically observed in the near dissipation range. The clustering in the inertial subrange is characterized by the bump in the particle number density spectra and is due to modulation of preferential concentration. The number density spectrum can be modeled by a rational function of the scale-dependent Stokes number.

2.
Phys Rev E ; 97(3-1): 033109, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29776089

ABSTRACT

Heavy particle clustering in turbulence is discussed from both phenomenological and analytical points of view, where the -4/3 power law of the pair-correlation function is obtained in the inertial range. A closure theory explains the power law in terms of the balance between turbulence mixing and preferential-concentration mechanism. The obtained -4/3 power law is supported by a direct numerical simulation of particle-laden turbulence.

3.
Phys Rev E ; 96(6-1): 063119, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29347383

ABSTRACT

We present numerical simulations of the three-dimensional Galerkin truncated incompressible Euler equations that we integrate in time while regularizing the solution by applying a wavelet-based denoising. For this, at each time step, the vorticity field is decomposed into wavelet coefficients, which are split into strong and weak coefficients, before reconstructing them in physical space to obtain the corresponding coherent and incoherent vorticities. Both components are multiscale and orthogonal to each other. Then, by using the Biot-Savart kernel, one obtains the coherent and incoherent velocities. Advancing the coherent flow in time, while filtering out the noiselike incoherent flow, models turbulent dissipation and corresponds to an adaptive regularization. To track the flow evolution in both space and scale, a safety zone is added in wavelet coefficient space to the coherent wavelet coefficients. It is shown that the coherent flow indeed exhibits an intermittent nonlinear dynamics and a k^{-5/3} energy spectrum, where k is the wave number, characteristic of three-dimensional homogeneous isotropic turbulence. Finally, we compare the dynamical and statistical properties of Euler flows subjected to four kinds of regularizations: dissipative (Navier-Stokes), hyperdissipative (iterated Laplacian), dispersive (Euler-Voigt), and wavelet-based regularizations.

4.
Article in English | MEDLINE | ID: mdl-24730943

ABSTRACT

Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066313, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23005212

ABSTRACT

The four-fifths law for third-order longitudinal moments is examined, using direct numerical simulation (DNS) data on three-dimensional (3D) forced incompressible magnetohydrodynamic (MHD) turbulence without a uniformly imposed magnetic field in a periodic box. The magnetic Prandtl number is set to one, and the number of grid points is 512(3). A generalized Kármán-Howarth-Kolmogorov equation for second-order velocity moments in isotropic MHD turbulence is extended to anisotropic MHD turbulence by means of a spherical average over the direction of r. Here, r is a separation vector. The viscous, forcing, anisotropic and nonstationary terms in the generalized equation are quantified. It is found that the influence of the anisotropic terms on the four-fifths law is negligible at small scales, compared to that of the viscous term. However, the influence of the directional anisotropy, which is measured by the departure of the third-order moments in a particular direction of r from the spherically averaged ones, on the four-fifths law is suggested to be substantial, at least in the case studied here.


Subject(s)
Hydrodynamics , Magnetic Fields , Models, Theoretical , Rheology/methods , Compressive Strength , Computer Simulation
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(2 Pt 2): 026303, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19391836

ABSTRACT

Fully developed homogeneous isotropic turbulent fields, computed by direct numerical simulation, are compared to divergence-free random fields having the same energy spectrum and either the same helicity spectrum as that of the turbulent data, or vanishing helicity. We show that the scale-dependent velocity flatness quantifies the spatial variability of the energy spectrum. The flatness exhibits a substantial increase at small scales for the turbulent field, but remains constant for the random fields. A diagnostic, the scale-dependent helicity, is proposed to quantify the geometrical statistics of the flow, which shows that only the turbulent flow is intermittent. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian accelerations confirm the inherently different dynamics of turbulent and random flows.

SELECTION OF CITATIONS
SEARCH DETAIL
...