Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 12(3)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168816

ABSTRACT

Microbes in the human gut play a role in the production of bioactive compounds, including some vitamins. Although several studies attempted to identify definitive markers for certain vitamin deficiencies, the role of gut microbiota in these deficiencies is unclear. To investigate the role of gut microbiota in deficiencies of four vitamins, B2, B6, folate, and B12, we conducted a comprehensive analysis of metabolites in mice treated and untreated with antibiotics. We identified glycolate (GA) as a novel marker of vitamin B2 (VB2) deficiency, and show that gut microbiota sense dietary VB2 deficiency and accumulate GA in response. The plasma GA concentration responded to reduced VB2 supply from both the gut microbiota and the diet. These results suggest that GA is a novel marker that can be used to assess whether or not the net supply of VB2 from dietary sources and gut microbiota is sufficient. We also found that gut microbiota can provide short-term compensation for host VB2 deficiency when dietary VB2 is withheld.


Subject(s)
Energy Metabolism , Gastrointestinal Microbiome , Glycolates/metabolism , Riboflavin Deficiency/metabolism , Riboflavin/metabolism , Alcohol Oxidoreductases/metabolism , Animal Feed , Animals , Disease Models, Animal , Female , Metabolome , Metabolomics/methods , Mice , Riboflavin Deficiency/etiology
2.
J Med Invest ; 66(1.2): 148-152, 2019.
Article in English | MEDLINE | ID: mdl-31064928

ABSTRACT

Chronic care patients undergoing hemodialysis for treatment of end-stage renal failure experience higher rates of bloodstream-associated infection due to the patients' compromised immune system and management of the bloodstream through catheters. Staphylococcus species are acommon cause of hemodialysis catheterrelated bloodstream infections. We investigated environmental bacterial contamination of dialysis wards and contamination of hemodialysis devices to determine the source of bacteria for these infections. All bacterial samples were collected by the swab method and the agarose stamp method. And which bacterium were identified by BBL CRYSTAL Kit or 16s rRNA sequences. In our data, bacterial cell number of hemodialysis device was lower than environment of patient surrounds. But Staphylococcus spp. were found predominantly on the hemodialysis device (46.8%), especially on areas frequently touched by healthcare-workers (such as Touch screen). Among Staphylococcus spp., Staphylococcus epidermidis was most frequently observed (42.1% of Staphylococcus spp.), and more surprising, 48.2% of the Staphylococcus spp. indicated high resistance for methicillin. Our finding suggests that hemodialysis device highly contaminated with bloodstream infection associated bacteria. This study can be used as a source to assess the risk of contamination-related infection and to develop the cleaning system for the better prevention for bloodstream infections in patients with hemodialysis. J. Med. Invest. 66 : 148-152, February, 2019.


Subject(s)
Bacterial Load , Equipment Contamination , Renal Dialysis/adverse effects , Bacteremia/etiology , Humans , Renal Dialysis/instrumentation
3.
J Clin Biochem Nutr ; 62(2): 155-160, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29610555

ABSTRACT

Several environmental factors during the prenatal period transgenerationally affect the health of newborns in later life. Because low-dose antibiotics have been used for promoting the growth of crops and livestock in agriculture, humans may have ingested residual antibiotics for several decades. However, the effect of prenatal administration of low-dose antibiotics on newborns' health in later life is unclear. In the present study, we found that prenatal treatment of murine mothers with low-dose antibiotics increased the abundance of bacteria of the phylum Firmicutes and the genera Clostridium IV and XIVa in feces from pups. In addition, the body fat percentage of mice in the antibiotic-treated group was higher than those in the control group at 12 weeks of age even though all pups were fed a standard diet. The body fat percentage of all mice was correlated with the abundance of fecal bacteria of Clostridium IV and XIVa. These results predict that low-dose antibiotic administration during the prenatal period affects the gut microbiota of newborns and possibly their health in later life.

4.
Nutrients ; 9(7)2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28708089

ABSTRACT

The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that 1.5-4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism.


Subject(s)
Diet , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Sweetening Agents , Xylitol/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/analysis , Diet, High-Fat , Drinking , Dyslipidemias/drug therapy , Dyslipidemias/etiology , Electrophoresis/methods , Fecal Microbiota Transplantation , Feces/microbiology , Glucose Tolerance Test , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, DNA , Xylitol/administration & dosage , Xylitol/therapeutic use
5.
Nutrients ; 9(6)2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28587159

ABSTRACT

Abstract: Non-caloric artificial sweeteners (NASs) provide sweet tastes to food without adding calories or glucose. NASs can be used as alternative sweeteners for controlling blood glucose levels and weight gain. Although the consumption of NASs has increased over the past decade in Japan and other countries, whether these sweeteners affect the composition of the gut microbiome is unclear. In the present study, we examined the effects of sucralose or acesulfame-K ingestion (at most the maximum acceptable daily intake (ADI) levels, 15 mg/kg body weight) on the gut microbiome in mice. Consumption of sucralose, but not acesulfame-K, for 8 weeks reduced the relative amount of Clostridiumcluster XIVa in feces. Meanwhile, sucralose and acesulfame-K did not increase food intake, body weight gain or liver weight, or fat in the epididymis or cecum. Only sucralose intake increased the concentration of hepatic cholesterol and cholic acid. Moreover, the relative concentration of butyrate and the ratio of secondary/primary bile acids in luminal metabolites increased with sucralose consumption in a dose-dependent manner. These results suggest that daily intake of maximum ADI levels of sucralose, but not acesulfame-K, affected the relative amount of the Clostridium cluster XIVa in fecal microbiome and cholesterol bile acid metabolism in mice.


Subject(s)
Dose-Response Relationship, Drug , Gastrointestinal Microbiome , Non-Nutritive Sweeteners/administration & dosage , Animals , Bile Acids and Salts/metabolism , Cholesterol/blood , Clostridium/isolation & purification , Feces/microbiology , Female , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Male , Mice , Recommended Dietary Allowances , Sucrose/administration & dosage , Sucrose/analogs & derivatives , Thiazines/administration & dosage , Triglycerides/blood , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...