Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 219: 109221, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36084794

ABSTRACT

The present study evaluated the effects of compounds targeting extrasynaptic δ subunit-containing γ-aminobutyric acid type A receptors (δ*-GABAARs) to interrogate the role of tonic inhibition in the development of antinociceptive tolerance caused by repeated morphine administration. We investigated the effect of subchronic or acute treatment with non-steroidal positive allosteric modulators (PAMs) of δ*-GABAARs, such as 2-261, on the morphine-antinociceptive tolerance. Mice were treated twice daily with morphine for 9 days and antinociception was measured using the hot water tail immersion test. Co-treatment with 2-261 and morphine prevented morphine-antinociceptive tolerance and acute administration of 2-261 on day 9 was sufficient to reverse the tolerance. Other compounds with activity at δ*-GABAARs also reversed morphine tolerance, whereas an enaminone that lacked activity at δ*-GABAARs did not. Acute administration of 2-261 did not cause an additive or synergistic antinociceptive effect when combined with an acute submaximal dose of morphine. We then used Cre/LoxP recombination to generate GABAA δ-subunit knockout mice to corroborate the pharmacological results. Observations of male δ-knockout mice demonstrated that the δ*-GABAARs was necessary for 2-261 modulation of both analgesic tolerance and somatic withdrawal symptoms produced by subchronic morphine. While female mice still benefited from the positive effects of 2-261, the δ-subunit was not necessary for these effects, highlighting a distinction of the different pathways that could have implications for some of the sex-related differences seen in human opioid-induced outcomes. Consequently, subtype-specific allosteric modulators of GABAARs may warrant further investigation as pharmacological targets to manage tolerance and withdrawal from opioids.


Subject(s)
Analgesics, Opioid , Morphine , Analgesics/pharmacology , Analgesics, Opioid/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Mice, Knockout , Receptors, GABA-A , Receptors, Opioid, delta , Water , gamma-Aminobutyric Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...