Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2005, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263236

ABSTRACT

Laser-induced fluorescence (LIF) Doppler spectroscopy using an optical vortex beam with an asymmetric intensity distribution, referred to as aOVLIF, is proposed as a new method to measure plasma flow velocity. LIF spectra were calculated numerically using typical laboratory low-temperature plasma parameters, and it was revealed that an ion flow across the beam produces a frequency shift of the spectra. This method also has the capability of temperature measurements. The propagation effects of asymmetric optical vortex beams are discussed assuming an actual experiment, and it is found that the sensitivity to the transverse flow velocity is approximately unchanged. The aOVLIF method, which exploits the inhomogeneous phase structure of optical vortices, can be applied to the determination of three-dimensional velocity vectors and promises to enhance the usefulness of conventional LIF spectroscopy using plane waves.

2.
J Cell Sci ; 136(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-37990810

ABSTRACT

The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Ultraviolet Rays , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism
3.
Sci Rep ; 13(1): 15400, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37717113

ABSTRACT

Tunable diode laser absorption spectroscopy (TDLAS) is a valuable method for measuring particle flow velocities in plasma. However, conventional TDLAS using a plane-wave beam is sensitive only to the laser propagation direction. This limitation is particularly unfavorable for the observation of the particle transportation perpendicularly incident on the material in the plasma-material interaction. In this paper, we show for the first time that flow measurements perpendicular to the beam direction are possible by replacing the probe beam with an optical vortex beam. Because an optical vortex has a helical wavefront, particles moving in its field experience an azimuthal Doppler shift in addition to the translational Doppler shift. Assuming a uniform gas flow across the optical vortex, the azimuthal Doppler shift of the absorption spectrum observed in the beam cross-section varies sinusoidally in the azimuthal direction. The transverse flow velocity is derived from the amplitude of this sinusoidal variation. At transverse velocities above 70 m/s, the measurement errors are found to be less than 15%, with a mean absolute percentage error of less than 8%.

4.
Free Radic Res ; 57(3): 239-270, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37395063

ABSTRACT

This review provides a description of the historical background of the development of biological applications of low-temperature plasmas. The generation of plasma, methods and devices, plasma sources, and measurements of plasma properties, such as electron dynamics and chemical species generation in both gaseous and aqueous phases, were assessed. Currently, direct irradiation methods for plasma discharges contacting biological surfaces, such as the skin and teeth, are related to plasma biological interactions. Indirect methods using plasma-treated liquids are based on plasma-liquid interactions. The use of these two methods is rapidly increasing in preclinical studies and cancer therapy. The authors address the prospects for further developments in cancer therapeutic applications by understanding the interactions between the plasma and living organisms.


Subject(s)
Neoplasms , Plasma Gases , Humans , Plasma Gases/therapeutic use , Reactive Oxygen Species/chemistry , Temperature , Gases , Neoplasms/therapy
5.
Int J Mol Sci ; 22(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803786

ABSTRACT

Cold atmospheric plasma (CAP) has attracted much attention in the fields of biotechnology and medicine owing to its potential utility in clinical applications. Recently accumulating evidence has demonstrated that CAP influences protein structures. However, there remain open questions regarding the molecular mechanisms behind the CAP-induced structural perturbations of biomacromolecules. Here, we investigated the potential effects of CAP irradiation of amyloid ß (Aß), an amyloidogenic protein associated with Alzheimer's disease. Using nuclear magnetic resonance spectroscopy, we observed gradual spectral changes in Aß after a 10 s CAP pretreatment, which also suppressed its fibril formation, as revealed by thioflavin T assay. As per mass spectrometric analyses, these effects were attributed to selective oxidation of the methionine residue (Met) at position 35. Interestingly, this modification occurred when Aß was dissolved into a pre-irradiated buffer, indicating that some reactive species oxidize the Met residue. Our results strongly suggest that the H2O2 generated in the solution by CAP irradiation is responsible for Met oxidation, which inhibits Aß amyloid formation. The findings of the present study provide fundamental insights into plasma biology, giving clues for developing novel applications of CAP.


Subject(s)
Amyloid beta-Peptides/metabolism , Plasma Gases/pharmacology , Amino Acid Sequence , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Fluorescence , Magnetic Resonance Spectroscopy , Methionine/metabolism , Oxidation-Reduction , Protein Aggregates
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056401, 2012 May.
Article in English | MEDLINE | ID: mdl-23004873

ABSTRACT

The power-off phase of pulsed low-pressure plasmas (the so-called afterglow) in noble gases is a rich field for both fundamental and application oriented research. The physics of these plasmas is complex and involves various processes: Initially, electrons cool rapidly to temperatures close to the gas temperature by evaporative cooling. At sufficiently high plasma densities the low kinetic electron energy strongly enhances three-body recombination into Rydberg states. Finally, subsequent collisional-radiative decay leads to emission of radiation and populates the metastable states of the atoms. The various steps are investigated experimentally and are compared to analytical models. This allows us to follow all steps throughout in a single experiment involving diagnostics of electron density, metastable density, and emission. Excellent agreement with the models is achieved. The mechanisms included are: (i) for electrons, balance between evaporative cooling and Coulomb collisions with ions leading to thermalization; (ii) consistent combination of re-ionization and microfield reduction of the ionization energy in the recombination rate; (iii) adiabatic balance of recombination and collisional and radiative de-excitation; and (iv) radiative population and diffusional and pooling collisional loss of metastable levels. Although the experiment is carried out in argon, the underlying physics is generally applicable for the afterglow of high-density low-pressure discharges in atomic gases.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 046407, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680586

ABSTRACT

A simple analytical fluid dynamic model is developed for evaporative electron cooling in a low-pressure decaying plasma and compared to a two-dimensional simulation and experimental data for the particular case of argon. Measured electron temperature and density developments are fully reproduced by the ab initio model and the simulation. Further, it is shown that in the late afterglow thermalization of electrons occurs by coupling to the ion fluid via Coulomb collisions at sufficiently high electron densities and not by coupling to the neutral background.

8.
Rev Sci Instrum ; 80(5): 053505, 2009 May.
Article in English | MEDLINE | ID: mdl-19485505

ABSTRACT

A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is +/-2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

9.
Phys Rev Lett ; 89(7): 075001, 2002 Aug 12.
Article in English | MEDLINE | ID: mdl-12190523

ABSTRACT

Spontaneous formation of a cylindrical density cavity, or "plasma hole," has been observed in a rotating magnetized plasma. Density of the plasma hole is one-tenth of that of ambient plasma and is bounded by a steep transition layer of the order of several ion Larmor radii. The flow velocity field associated with the plasma hole is experimentally determined, exhibiting a monopole vortical structure. It is found that the vorticity distribution is localized near the center of the hole and is identified as a Burgers vortex. This is the first experimental observation of a Burgers vortex in a plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...