Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 16(11): 2137-2143, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34647721

ABSTRACT

Poly(ADP-ribose) polymerases, PARPs, transfer ADP-ribose onto target proteins from nicotinamide adenine dinucleotide (NAD+). Current mass spectrometric analytical methods require proteolysis of target proteins, limiting the study of dynamic ADP-ribosylation on contiguous proteins. Herein, we present a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method that facilitates multisite analysis of ADP-ribosylation. We observe divergent ADP-ribosylation dynamics for the catalytic domains of PARPs 14 and 15, with PARP15 modifying more sites on itself (+3-4 ADP-ribose) than the closely related PARP14 protein (+1-2 ADP-ribose)─despite similar numbers of potential modification sites. We identify, for the first time, a minimal peptide fragment (18 amino-acids) that is preferentially modified by PARP14. Finally, we demonstrate through mutagenesis and chemical treatment with hydroxylamine that PARPs 14/15 prefer acidic residues. Our results highlight the utility of MALDI-TOF in the analysis of PARP target modifications and in elucidating the biochemical mechanism governing PARP target selection.


Subject(s)
ADP-Ribosylation/physiology , Chromatography, Thin Layer , Poly(ADP-ribose) Polymerases/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Poly(ADP-ribose) Polymerases/genetics , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...