Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 250: 112402, 2024 01.
Article in English | MEDLINE | ID: mdl-37857057

ABSTRACT

Two indium(III) complexes of formula mer-[InIIICl3(4-Me-pzH)3] and trans-[InIIICl2(4-Me-pzH)4]Cl·(4-Me-pzH)2·(H2O) were isolated from the same reaction mixture and crystallographically characterized. The two complexes exist in dynamic equilibrium and their dynamic behavior was probed by variable temperature 1H NMR spectroscopy in the 202 to 296 K range. Powder X-ray diffraction of the batch confirmed existence of both complexes in a 1:2 ratio. Antibacterial properties of both new complexes, in addition to seven other previously published indium(III) complexes, were investigated against three Gram-positive and four Gram-negative pathogenic bacterial strains. The results showed potential for the development of indium(III)-based antipseudomonal and antituberculosis drugs, with mer-[InCl3(4-Ph-pzH)3] being especially effective.


Subject(s)
Indium , Pyrazoles , Models, Molecular , Pyrazoles/pharmacology , Pyrazoles/chemistry , X-Ray Diffraction , Gram-Negative Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Microorganisms ; 11(5)2023 May 03.
Article in English | MEDLINE | ID: mdl-37317169

ABSTRACT

Malaria, caused by Plasmodium protozoal parasites, remains a leading cause of morbidity and mortality. The Plasmodium parasite has a complex life cycle, with asexual and sexual forms in humans and Anopheles mosquitoes. Most antimalarials target only the symptomatic asexual blood stage. However, to ensure malaria eradication, new drugs with efficacy at multiple stages of the life cycle are necessary. We previously demonstrated that arsinothricin (AST), a newly discovered organoarsenical natural product, is a potent broad-spectrum antibiotic that inhibits the growth of various prokaryotic pathogens. Here, we report that AST is an effective multi-stage antimalarial. AST is a nonproteinogenic amino acid analog of glutamate that inhibits prokaryotic glutamine synthetase (GS). Phylogenetic analysis shows that Plasmodium GS, which is expressed throughout all stages of the parasite life cycle, is more closely related to prokaryotic GS than eukaryotic GS. AST potently inhibits Plasmodium GS, while it is less effective on human GS. Notably, AST effectively inhibits both Plasmodium erythrocytic proliferation and parasite transmission to mosquitoes. In contrast, AST is relatively nontoxic to a number of human cell lines, suggesting that AST is selective against malaria pathogens, with little negative effect on the human host. We propose that AST is a promising lead compound for developing a new class of multi-stage antimalarials.

3.
Mol Microbiol ; 119(4): 505-514, 2023 04.
Article in English | MEDLINE | ID: mdl-36785875

ABSTRACT

The pentavalent organoarsenical arsinothricin (AST) is a natural product synthesized by the rhizosphere bacterium Burkholderia gladioli GSRB05. AST is a broad-spectrum antibiotic effective against human pathogens such as carbapenem-resistant Enterobacter cloacae. It is a non-proteogenic amino acid and glutamate mimetic that inhibits bacterial glutamine synthetase. The AST biosynthetic pathway is composed of a three-gene cluster, arsQML. ArsL catalyzes synthesis of reduced trivalent hydroxyarsinothricin (R-AST-OH), which is methylated by ArsM to the reduced trivalent form of AST (R-AST). In the culture medium of B. gladioli, both trivalent species appear as the corresponding pentavalent arsenicals, likely due to oxidation in air. ArsQ is an efflux permease that is proposed to transport AST or related species out of the cells, but the chemical nature of the actual transport substrate is unclear. In this study, B. gladioli arsQ was expressed in Escherichia coli and shown to confer resistance to AST and its derivatives. Cells of E. coli accumulate R-AST, and exponentially growing cells expressing arsQ take up less R-AST. The cells exhibit little transport of their pentavalent forms. Transport was independent of cellular energy and appears to be equilibrative. A homology model of ArsQ suggests that Ser320 is in the substrate binding site. A S320A mutant exhibits reduced R-AST-OH transport, suggesting that it plays a role in ArsQ function. The ArsQ permease is proposed to be an energy-independent uniporter responsible for downhill transport of the trivalent form of AST out of cells, which is oxidized extracellularly to the active form of the antibiotic.


Subject(s)
Arsenicals , Escherichia coli Proteins , Symporters , Humans , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli/metabolism , Arsenicals/metabolism , Escherichia coli Proteins/metabolism , Symporters/metabolism , Biological Transport, Active
4.
Biometals ; 36(2): 283-301, 2023 04.
Article in English | MEDLINE | ID: mdl-35190937

ABSTRACT

Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.


Subject(s)
Arsenic , Arsenicals , COVID-19 , Humans , Arsenic/therapeutic use , Oxides , Arsenicals/pharmacology , Arsenicals/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
Environ Toxicol Chem ; 42(1): 225-241, 2023 01.
Article in English | MEDLINE | ID: mdl-36349954

ABSTRACT

Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-µm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-µm filters) accounted for 30%-70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-µm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-µm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225-241. © 2022 SETAC.


Subject(s)
Arsenic , Mercury , Water Pollutants, Chemical , Animals , Mercury/analysis , Food Chain , Water Pollutants, Chemical/analysis , Fishes , Lakes/chemistry , Trout , Environmental Monitoring/methods
6.
Toxics ; 10(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36287835

ABSTRACT

Mushrooms have unique properties in arsenic metabolism. In many commercial and wild-grown mushrooms, arsenobetaine (AsB), a non-toxic arsenical, was found as the dominant arsenic species. The AsB biosynthesis remains unknown, so we designed experiments to study conditions for AsB formation in the white button mushroom, Agaricus bisporus. The mushrooms were treated with various arsenic species including arsenite (As(III)), arsenate (As(V)), methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAsO), and their accumulation and metabolism were determined using inductively coupled mass spectrometer (ICP-MS) and high-pressure liquid chromatography coupled with ICP-MS (HPLC-ICP-MS), respectively. Our results showed that mycelia have a higher accumulation for inorganic arsenicals while fruiting bodies showed higher accumulation for methylated arsenic species. Two major arsenic metabolites were produced in fruiting bodies: DMAs(V) and AsB. Among tested arsenicals, only MAs(V) was methylated to DMAs(V). Surprisingly, AsB was only detected as the major arsenic product when TMAsO was supplied. Additionally, AsB was only detected in the fruiting body, but not mycelium, suggesting that methylated products were transported to the fruiting body for arsenobetaine formation. Overall, our results support that methylation and AsB formation are two connected pathways where trimethylated arsenic is the optimal precursor for AsB formation.

7.
Environ Sci Technol ; 56(19): 13858-13866, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36112513

ABSTRACT

Arsenic methylation contributes to the formation and diversity of environmental organoarsenicals, an important process in the arsenic biogeochemical cycle. The arsM gene encoding an arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase is widely distributed in members of every kingdom. A number of ArsM enzymes have been shown to have different patterns of methylation. When incubated with inorganic As(III), Burkholderia gladioli GSRB05 has been shown to synthesize the organoarsenical antibiotic arsinothricin (AST) but does not produce either methylarsenate (MAs(V)) or dimethylarsenate (DMAs(V)). Here, we show that cells of B. gladioli GSRB05 synthesize DMAs(V) when cultured with either MAs(III) or MAs(V). Heterologous expression of the BgarsM gene in Escherichia coli conferred resistance to MAs(III) but not As(III). The cells methylate MAs(III) and the AST precursor, reduced trivalent hydroxyarsinothricin (R-AST-OH) but do not methylate inorganic As(III). Similar results were obtained with purified BgArsM. Compared with ArsM orthologs, BgArsM has an additional 37 amino acid residues in a linker region between domains. Deletion of the additional 37 residues restored As(III) methylation activity. Cells of E. coli co-expressing the BgarsL gene encoding the noncanonical radical SAM enzyme that catalyzes the synthesis of R-AST-OH together with the BgarsM gene produce much more of the antibiotic AST compared with E. coli cells co-expressing BgarsL together with the CrarsM gene from Chlamydomonas reinhardtii, which lacks the sequence for additional 37 residues. We propose that the presence of the insertion reduces the fitness of B. gladioli because it cannot detoxify inorganic arsenic but concomitantly confers an evolutionary advantage by increasing the ability to produce AST.


Subject(s)
Arsenic , Arsenicals , Arsenites , Burkholderia gladioli , Anti-Bacterial Agents , Arsenic/metabolism , Arsenicals/metabolism , Arsenites/metabolism , Burkholderia gladioli/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , S-Adenosylmethionine/metabolism
8.
J Inorg Biochem ; 232: 111836, 2022 07.
Article in English | MEDLINE | ID: mdl-35487149

ABSTRACT

Organoarsenicals such as monosodium methylarsenate (MSMA or MAs(V)) and roxarsone (4-hydroxyl-3-nitrophenylarsenate or Rox(V)) have been extensively used as herbicides and growth enhancers for poultry, respectively. Degradation of organoarsenicals to inorganic arsenite (As(III)) contaminates crops and drinking water. One such process is catalyzed by the bacterial enzyme ArsI, whose gene is found in many soil bacteria. ArsI is a non-heme ferrous iron (Fe(II))-dependent dioxygenase that catalyzes oxygen-dependent cleavage of the carbon­arsenic (C-As) bond in trivalent organoarsenicals, degrading them to inorganic As(III). From previous crystal structures of ArsI, we predicted that a loop-gating mechanism controls the catalytic reaction. Understanding the catalytic mechanism of ArsI requires knowledge of the mechanisms of substrate binding and activation of dioxygen. Here we report new ArsI structures with bound Rox(III) and mutant enzymes with alteration of active site residues. Our results elucidate steps in the catalytic cycle of this novel dioxygenase and enhance understanding of the recycling of environmental organoarsenicals.


Subject(s)
Arsenic , Arsenicals , Dioxygenases , Lyases , Arsenic/metabolism , Arsenicals/chemistry , Bacteria , Carbon , Catalysis , Dioxygenases/chemistry , Lyases/genetics , Lyases/metabolism
9.
Environ Microbiol ; 24(4): 1977-1987, 2022 04.
Article in English | MEDLINE | ID: mdl-35229439

ABSTRACT

Arsenical resistance (ars) operons encode genes for arsenic resistance and biotransformation. The majority are composed of individual genes, but fusion of ars genes is not uncommon, although it is not clear if the fused gene products are functional. Here we report identification of a four-gene ars operon from Paracoccus sp. SY that has two arsR-arsC gene fusions. ArsRC1 and ArsRC2 are related proteins that consist of an N-terminal ArsR arsenite (As(III))-responsive repressor with a C-terminal ArsC arsenate reductase. The other two genes in the operon are gapdh and arsJ. GAPDH, glyceraldehyde 3-phosphate dehydrogenase, forms 1-arseno-3-phosphoglycerate (1As3PGA) from 3-phosphoglyceraldehyde and arsenate (As(V)), ArsJ is an efflux permease for 1As3PGA that dissociates into extracellular As(V) and 3-phosphoglycerate. The net effect is As(V) extrusion and resistance. ArsRs are usually selective for As(III) and do not respond to As(V). However, the substrates and products of this operon are pentavalent, which would not be inducers of the operon. We propose that ArsRC fusions overcome this limitation by channelling the ArsC product into the ArsR binding site without diffusion through the cytosol, a de facto mechanism for As(V) induction. This novel mechanism for arsenate sensing can confer an evolutionary advantage for detoxification of inorganic arsenate.


Subject(s)
Arsenic , Arsenicals , Arsenites , Arsenates/metabolism , Arsenic/metabolism , Arsenicals/metabolism , Arsenites/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Operon
10.
Annu Rev Microbiol ; 75: 175-197, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34343021

ABSTRACT

Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids.


Subject(s)
Metalloids , Copper/toxicity
11.
Microbiol Spectr ; 9(1): e0050221, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34378964

ABSTRACT

The soil bacterium Burkholderia gladioli GSRB05 produces the natural compound arsinothricin [2-amino-4-(hydroxymethylarsinoyl) butanoate] (AST), which has been demonstrated to be a broad-spectrum antibiotic. To identify the genes responsible for AST biosynthesis, a draft genome sequence of B. gladioli GSRB05 was constructed. Three genes, arsQML, in an arsenic resistance operon were found to be a biosynthetic gene cluster responsible for synthesis of AST and its precursor, hydroxyarsinothricin [2-amino-4-(dihydroxyarsinoyl) butanoate] (AST-OH). The arsL gene product is a noncanonical radical S-adenosylmethionine (SAM) enzyme that is predicted to transfer the 3-amino-3-carboxypropyl (ACP) group from SAM to the arsenic atom in inorganic arsenite, forming AST-OH, which is methylated by the arsM gene product, a SAM methyltransferase, to produce AST. Finally, the arsQ gene product is an efflux permease that extrudes AST from the cells, a common final step in antibiotic-producing bacteria. Elucidation of the biosynthetic gene cluster for this novel arsenic-containing antibiotic adds an important new tool for continuation of the antibiotic era. IMPORTANCE Antimicrobial resistance is an emerging global public health crisis, calling for urgent development of novel potent antibiotics. We propose that arsinothricin and related arsenic-containing compounds may be the progenitors of a new class of antibiotics to extend our antibiotic era. Here, we report identification of the biosynthetic gene cluster for arsinothricin and demonstrate that only three genes, two of which are novel, are required for the biosynthesis and transport of arsinothricin, in contrast to the phosphonate counterpart, phosphinothricin, which requires over 20 genes. Our discoveries will provide insight for the development of more effective organoarsenical antibiotics and illustrate the previously unknown complexity of the arsenic biogeochemical cycle, as well as bring new perspective to environmental arsenic biochemistry.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Arsenicals/metabolism , Burkholderia gladioli/genetics , Burkholderia gladioli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia gladioli/enzymology , Genome, Bacterial , Methyltransferases/genetics , Methyltransferases/metabolism , Multigene Family , S-Adenosylmethionine/metabolism
12.
Int J Mol Sci ; 22(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802299

ABSTRACT

Selenium is an essential micronutrient with a wide range of biological effects in mammals. The inorganic form of selenium, selenite, is supplemented to relieve individuals with selenium deficiency and to alleviate associated symptoms. Additionally, physiological and supranutritional selenite have shown selectively higher affinity and toxicity towards cancer cells, highlighting their potential to serve as chemotherapeutic agents or adjuvants. At varying doses, selenite extensively regulates cellular signaling and modulates many cellular processes. In this study, we report the identification of Delta-Notch signaling as a previously uncharacterized selenite inhibited target. Our transcriptomic results in selenite treated primary mouse hepatocytes revealed that the transcription of Notch1, Notch2, Hes1, Maml1, Furin and c-Myc were all decreased following selenite treatment. We further showed that selenite can inhibit Notch1 expression in cultured MCF7 breast adenocarcinoma cells and HEPG2 liver carcinoma cells. In mice acutely treated with 2.5 mg/kg selenite via intraperitoneal injection, we found that Notch1 expression was drastically lowered in liver and kidney tissues by 90% and 70%, respectively. Combined, these results support selenite as a novel inhibitor of Notch signaling, and a plausible mechanism of inhibition has been proposed. This discovery highlights the potential value of selenite applied in a pathological context where Notch is a key drug target in diseases such as cancer, fibrosis, and neurodegenerative disorders.


Subject(s)
Receptors, Notch/metabolism , Selenious Acid/pharmacology , Signal Transduction/drug effects , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Selenium/metabolism , Transcriptome/drug effects
13.
RSC Adv ; 11(56): 35600-35606, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493177

ABSTRACT

We report two routes of chemical synthesis of arsinothricin (AST), the novel organoarsenical antibiotic. One is by condensation of the 2-chloroethyl(methyl)arsinic acid with acetamidomalonate, and the second involves reduction of the N-acetyl protected derivative of hydroxyarsinothricin (AST-OH) and subsequent methylation of a trivalent arsenic intermediate with methyl iodide. The enzyme AST N-acetyltransferase (ArsN1) was utilized to purify l-AST from racemic AST. This chemical synthesis provides a source of this novel antibiotic for future drug development.

14.
Chemosphere ; 254: 126911, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32957300

ABSTRACT

Trivalent organoarsenicals such as methylarsenite (MAs(III)) are considerably more toxic than inorganic arsenate (As(V)) or arsenite (As(III)). In microbial communities MAs(III) exhibits significant antimicrobial activity. Although MAs(III) and other organoarsenicals contribute to the global arsenic biogeocycle, how they exert antibiotic-like properties is largely unknown. To identify possible targets of MAs(III), a genomic library of the gram-negative bacterium, Shewanella putrefaciens 200, was expressed in Escherichia coli with selection for MAs(III) resistance. One clone contained the S. putrefaciens murA gene (SpmurA), which catalyzes the first committed step in peptidoglycan biosynthesis. Overexpression of SpmurA conferred MAs(III) resistance to E. coli. Purified SpMurA was inhibited by MAs(III), phenylarsenite (PhAs(III)) or the phosphonate antibiotic fosfomycin but not by inorganic As(III). Fosfomycin inhibits MurA by binding to a conserved residue that corresponds to Cys117 in SpMurA. A C117D mutant was resistant to fosfomycin but remained sensitive to MAs(III), indicating that the two compounds have different mechanisms of action. New inhibitors of peptidoglycan biosynthesis are highly sought after as antimicrobial drugs, and organoarsenicals represent a new area for the development of novel compounds for combating the threat of antibiotic resistance.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Drug Resistance, Bacterial/drug effects , Organometallic Compounds/pharmacology , Peptidoglycan/biosynthesis , Shewanella putrefaciens/drug effects , Alkyl and Aryl Transferases/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Peptidoglycan/metabolism , Shewanella putrefaciens/genetics
15.
Nanomaterials (Basel) ; 10(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824146

ABSTRACT

The oxidation of highly toxic arsenite (As(III)) was studied using humic acid-coated magnetite nanoparticles (HA-MNP) as a photosensitizer. Detailed characterization of the HA-MNP was carried out before and after the photoinduced treatment of As(III) species. Upon irradiation of HA-MNP with 350 nm light, a portion of the As(III) species was oxidized to arsenate (As(V)) and was nearly quantitatively removed from the aqueous solution. The separation of As(III) from the aqueous solution is primarily driven by the strong adsorption of As(III) onto the HA-MNP. As(III) removals of 40-90% were achieved within 60 min depending on the amount of HA-MNP. The generation of reactive oxygen species (•OH and 1O2) and the triplet excited state of HA-MNP (3HA-MNP*) was monitored and quantified during HA-MNP photolysis. The results indicate 3HA-MNP* and/or singlet oxygen (1O2) depending on the reaction conditions are responsible for converting As(III) to less toxic As(V). The formation of 3HA-MNP* was quantified using the electron transfer probe 2,4,6-trimethylphenol (TMP). The formation rate of 3HA-MNP* was 8.0 ± 0.6 × 10-9 M s-1 at the TMP concentration of 50 µM and HA-MNP concentration of 1.0 g L-1. The easy preparation, capacity for triplet excited state and singlet oxygen production, and magnetic separation suggest HA-MNP has potential to be a photosensitizer for the remediation of arsenic (As) and other pollutants susceptible to advanced oxidation.

16.
J Nat Prod ; 83(9): 2809-2813, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32830503

ABSTRACT

Arsinothricin [AST (1)], a new broad-spectrum organoarsenical antibiotic, is a nonproteinogenic analogue of glutamate that effectively inhibits glutamine synthetase. We report the chemical synthesis of an intermediate in the pathway to 1, hydroxyarsinothricin [AST-OH (2)], which can be converted to 1 by enzymatic methylation catalyzed by the ArsM As(III) S-adenosylmethionine methyltransferase. This is the first report of semisynthesis of 1, providing a source of this novel antibiotic that will be required for future clinical trials.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Arsenicals/chemical synthesis , Anti-Bacterial Agents/pharmacology , Arsenicals/pharmacology , Chromatography, High Pressure Liquid , Enzyme Inhibitors/pharmacology , Glutamate-Ammonia Ligase/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Mass Spectrometry , S-Adenosylmethionine/antagonists & inhibitors
17.
Sci Total Environ ; 744: 140830, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32721671

ABSTRACT

Because of the deficiency of water caused by the regional disparities of rainfall due to global warming, attention has been given to the use of well water as drinking water in developing countries. Our fieldwork study in Afghanistan showed that there was a maximum value of 3371 µg/L and an average value of 233 µg/L of lithium in well drinking water. Since the level of lithium in well water is higher than the levels in other countries, we investigated the health risk of lithium. After confirming no influence of ≤1000 µM lithium on cell viability, we found that lithium at concentrations of 100 and 500 µM promoted anchorage-independent growth of human immortalized keratinocytes (HaCaT) and lung epithelial cells (BEAS-2B) but not that of human keratinocytic carcinoma cells (HSC-5) or lung epithelial carcinoma cells (A549). The same concentrations of lithium also promoted phosphorylation of c-SRC and MEK/ERK but not that of AKT in the keratinocytes. Inhibitors of c-SRC (PP2) and MEK (PD98059) suppressed the lithium-induced increase in anchorage-independent growth of the keratinocytes. Our results suggested that lithium promoted transformation of nontumorigenic cells rather than progression of tumorigenic cells with preferential activation of the c-SRC/MEK/ERK pathway. Since previous pharmacokinetics studies indicated that it is possible for the serum level of lithium to reach 100 µM by drinking 2.5 L of water containing 3371 µg/L of lithium per day, the high level of lithium contamination in well drinking water in Kabul might be a potential oncogenic risk in humans.


Subject(s)
Cell Transformation, Neoplastic , Lithium , Afghanistan , Cell Line , Humans , Keratinocytes
18.
Environ Sci Technol ; 53(23): 13648-13656, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31682413

ABSTRACT

Massive amounts of methyl [e.g., methylarsenate, MAs(V)] and aromatic arsenicals [e.g., roxarsone (4-hydroxy-3-nitrophenylarsonate, Rox(V)] have been utilized as herbicides for weed control and growth promotors for poultry and swine, respectively. The majority of these organoarsenicals degrade into more toxic inorganic species. Here, we demonstrate that the legume symbiont Sinorhizobium meliloti both reduces MAs(V) to MAs(III) and catalyzes sequential two-step reduction of nitro and arsenate groups in Rox(V), producing the highly toxic trivalent amino aromatic derivative 4-hydroxy-3-aminophenylarsenite (HAPA(III)). The existence of this process suggests that S. meliloti possesses the ability to transform pentavalent methyl and aromatic arsenicals into antibiotics to provide a competitive advantage over other microbes, which would be a critical process for the synthetic aromatic arsenicals to function as antimicrobial growth promoters. The activated trivalent aromatic arsenicals are degraded into less-toxic inorganic species by an MAs(III)-demethylating aerobe, suggesting that environmental aromatic arsenicals also undergo a multiple-step degradation pathway, in analogy with the previously reported demethylation pathway of the methylarsenate herbicide. We further show that an FAD-NADPH-dependent nitroreductase encoded by mdaB gene catalyzes nitroreduction of roxarsone both in vivo and in vitro. Our results demonstrate that environmental organoarsenicals trigger competition between members of microbial communities, resulting in gradual degradation of organoarsenicals and contamination by inorganic arsenic.


Subject(s)
Anti-Infective Agents , Arsenicals , Fabaceae , Herbicides , Animals , Anti-Bacterial Agents , Arsenic , Roxarsone , Sinorhizobium meliloti , Swine
19.
Commun Biol ; 2: 131, 2019.
Article in English | MEDLINE | ID: mdl-30993215

ABSTRACT

The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich's salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits glutamine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the pervasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Arsenicals/chemistry , Arsenicals/pharmacology , Burkholderia gladioli/metabolism , Glutamic Acid/analogs & derivatives , Acetylation , Anti-Bacterial Agents/isolation & purification , Arsenicals/isolation & purification , Burkholderia gladioli/drug effects , Cell Survival/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Genes, Bacterial/genetics , Glutamate-Ammonia Ligase/analysis , Humans , Microbial Sensitivity Tests , Mycobacterium bovis/drug effects , Operon , THP-1 Cells
20.
Mol Microbiol ; 111(2): 487-494, 2019 02.
Article in English | MEDLINE | ID: mdl-30520200

ABSTRACT

Arsenic is the most ubiquitous environmental toxin. Here, we demonstrate that bacteria have evolved the ability to use arsenic to gain a competitive advantage over other bacteria at least twice. Microbes generate toxic methylarsenite (MAs(III)) by methylation of arsenite (As(III)) or reduction of methylarsenate (MAs(V)). MAs(III) is oxidized aerobically to MAs(V), making methylation a detoxification process. MAs(V) is continually re-reduced to MAs(III) by other community members, giving them a competitive advantage over sensitive bacteria. Because generation of a sustained pool of MAs(III) requires microbial communities, these complex interactions are an emergent property. We show that reduction of MAs(V) by Burkholderia sp. MR1 produces toxic MAs(III) that inhibits growth of Escherichia coli in mixed culture. There are three microbial mechanisms for resistance to MAs(III). ArsH oxidizes MAs(III) to MAs(V). ArsI degrades MAs(III) to As(III). ArsP confers resistance by efflux. Cells of E. coli expressing arsI, arsH or arsP grow in mixed culture with Burkholderia sp. MR1 in the presence of MAs(V). Thus MAs(III) has antibiotic properties: a toxic organic compound produced by one microbe to kill off competitors. Our results demonstrate that life has adapted to use environmental arsenic as a weapon in the continuing battle for dominance.


Subject(s)
Anti-Bacterial Agents/metabolism , Antibiosis , Arsenicals/metabolism , Burkholderia/metabolism , Carbon/metabolism , Drug Resistance, Bacterial , Escherichia coli/growth & development , Burkholderia/drug effects , Escherichia coli/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...