Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 501(3): 745-750, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29753741

ABSTRACT

Hindlimb unloading (HU) of rodents has been used as a ground-based model of spaceflight. In this study, we investigated the detailed impact of 14-day HU on the murine thymus. Thymic mass and cell number were significantly reduced after 14 days of hindlimb unloading, which was accompanied by an increment of plasma corticosterone. Although corticosterone reportedly causes selective apoptosis of CD4+CD8+ thymocytes (CD4+CD8+DPs) in mice treated with short-term HU, the reduction of thymocyte cellularity after the 14-day HU was not selective for CD4+CD8+DPs. In addition to the thymocyte reduction, the cellularity of thymic epithelial cells (TECs) was also reduced by the 14-day HU. Flow cytometric and RNA-sequencing analysis suggested that medullary TECs (mTECs) were preferentially reduced after HU. Moreover, immunohistochemical staining suggested that the 14-day HU caused a reduction of the mTECs expressing autoimmune regulator (Aire). Our data suggested that HU impacts both thymocytes and TECs. Consequently, these data imply that thymic T cell repertoire formation could be disturbed during spaceflight-like stress.


Subject(s)
Epithelial Cells/cytology , Hindlimb Suspension/methods , Thymocytes/cytology , Thymus Gland/physiology , Transcription Factors/analysis , Animals , CD4 Antigens/analysis , CD8 Antigens/analysis , Cell Count , Male , Mice, Inbred C57BL , Organ Size , Thymus Gland/cytology , Time Factors , AIRE Protein
2.
J Exp Med ; 213(8): 1441-58, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27401343

ABSTRACT

Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-ß receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs.


Subject(s)
Cell Differentiation/immunology , Epithelial Cells/immunology , Gene Expression Regulation/immunology , Mouse Embryonic Stem Cells/immunology , Thymus Gland/immunology , Transcription Factors/immunology , Animals , Cell Differentiation/genetics , Epithelial Cells/cytology , Gene Expression Regulation/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Plant Lectins/genetics , Plant Lectins/immunology , Thymus Gland/cytology , Transcription Factors/genetics , AIRE Protein
3.
Front Immunol ; 6: 461, 2015.
Article in English | MEDLINE | ID: mdl-26441966

ABSTRACT

Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell-cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-ß and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell-cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system.

4.
PLoS One ; 10(10): e0141650, 2015.
Article in English | MEDLINE | ID: mdl-26513242

ABSTRACT

Gravity change affects many immunological systems. We investigated the effects of hypergravity (2G) on murine thymic cells. Exposure of mice to 2G for three days reduced the frequency of CD4+CD8+ thymocytes (DP) and mature medullary thymic epithelial cells (mTECs), accompanied by an increment of keratin-5 and keratin-8 double-positive (K5+K8+) TECs that reportedly contain TEC progenitors. Whereas the reduction of DP was recovered by a 14-day exposure to 2G, the reduction of mature mTECs and the increment of K5+K8+ TEC persisted. Interestingly, a surgical lesion of the inner ear's vestibular apparatus inhibited these hypergravity effects. Quantitative PCR analysis revealed that the gene expression of Aire and RANK that are critical for mTEC function and development were up-regulated by the 3-day exposure and subsequently down-regulated by the 14-day exposure to 2G. Unexpectedly, this dynamic change in mTEC gene expression was independent of the vestibular apparatus. Overall, data suggest that 2G causes a temporary reduction of DP and a persistent reduction of mature mTECs in a vestibular system-dependent manner, and also dysregulates mTEC gene expression without involving the vestibular system. These data might provide insight on the impact of gravity change on thymic functions during spaceflight and living.


Subject(s)
Cell Count , Epithelial Cells/metabolism , Hypergravity , T-Lymphocyte Subsets/metabolism , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Animals , Biomarkers , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Gene Expression , Immunophenotyping , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...