Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 107(5): 1569-1580, 2021 09.
Article in English | MEDLINE | ID: mdl-34197670

ABSTRACT

A cultivation facility that can assist users in controlling the soil water condition is needed for accurately phenotyping plants under drought stress in an artificial environment. Here we report the Internet of Things-based pot system controlling optional treatment of soil water condition (iPOTs), an automatic irrigation system that mimics the drought condition in a growth chamber. The Wi-Fi-enabled iPOTs system allows water supply from the bottom of the pot, based on the soil water level set by the user, and automatically controls the soil water level at a desired depth. The iPOTs also allows users to monitor environmental parameters, such as soil temperature, air temperature, humidity, and light intensity, in each pot. To verify whether the iPOTs mimics the drought condition, we conducted a drought stress test on rice (Oryza sativa L.) varieties and near-isogenic lines, with diverse root system architecture, using the iPOTs system installed in a growth chamber. Similar to the results of a previous drought stress field trial, the growth of shallow-rooted rice accessions was severely affected by drought stress compared with that of deep-rooted accessions. The microclimate data obtained using the iPOTs system increased the accuracy of plant growth evaluation. Transcriptome analysis revealed that pot positions in the growth chamber had little impact on plant growth. Together, these results suggest that the iPOTs system is a reliable platform for phenotyping plants under drought stress.


Subject(s)
Internet of Things , Oryza/genetics , Soil/chemistry , Stress, Physiological , Water/physiology , Droughts , Gene Expression Profiling , Genotype , Oryza/physiology , Phenotype , Protein Interaction Maps
2.
Breed Sci ; 70(4): 481-486, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968351

ABSTRACT

RNA extraction has been improved by integration of a variety of materials in the protocol, such as phenol, guanidine thiocyanate, and silica, according to the case-specific demands. However, few methods have been designed for high-throughput RNA preparation for large-scale transcriptome studies. In this study, we established a high-throughput guanidinium thiocyanate and isopropyl alcohol based RNA extraction method (HighGI). HighGI is based on simple and phenol-free homemade buffers and the cost is substantially lower than a column-based commercial kit. We demonstrated that the quality and quantity of RNA extracted with HighGI were comparable to those extracted with a conventional phenol/chloroform-based method and a column-based commercial kit. HighGI retained small RNAs less than 200 bp, which are lost with a commercial column-based kit. We also demonstrated that HighGI is readily applicable to semi-automated RNA extraction. HighGI enables high-throughput RNA extraction for large-scale RNA preparation with high yield and quality.

3.
Fungal Biol ; 123(4): 318-329, 2019 04.
Article in English | MEDLINE | ID: mdl-30928040

ABSTRACT

In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast' polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless of lichen-forming status. In addition, the phylogenetic clusters suggested that LFFs belonging to Lecanoromycetes have duplicated proteins in each cluster. Consequently, the number of sequences similar to characterized yeast' polyol transporters were evaluated using the genomes of 472 species or strains of Ascomycota. Among these, LFFs belonging to Lecanoromycetes had greater numbers of deduced polyol transporter proteins. Thus, various polyol transporters are conserved in Ascomycota and polyol transporter genes appear to have expanded during the evolution of Lecanoromycetes.


Subject(s)
Ascomycota/enzymology , Ascomycota/metabolism , Lichens/microbiology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Polymers/metabolism , Ascomycota/genetics , Conserved Sequence , Phylogeny , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...