Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Oral Biosci ; 65(1): 62-71, 2023 03.
Article in English | MEDLINE | ID: mdl-36669699

ABSTRACT

OBJECTIVES: Recombinant human collagen peptide (RCP) is a recombinantly created xeno-free biomaterial enriched in arginine-glycine-aspartic acid sequences with good processability whose use for regenerative medicine applications is under investigation. The biocompatibility and osteogenic ability of RCP granules combined with ß-tricalcium phosphate (TCP) submicron particles (ß-TCP/RCP) were recently demonstrated. In the present study, ß-TCP/RCP was implanted into experimental periodontal tissue defects created in beagles to investigate its regenerative effects. METHODS: An RCP solution was lyophilized, granulated, and thermally cross-linked into particles approximately 1 mm in diameter. ß-TCP dispersion (1 wt%; 500 µL) was added to 100 mg of RCP granules to form ß-TCP/RCP. A three-walled intrabony defect (5 mm × 3 mm × 4 mm) was created on the mesial side of the mandibular first molar and filled with ß-TCP/RCP. RESULTS: A micro-computed tomography image analysis performed at 8 weeks postoperative showed a significantly greater amount of new bone after ß-TCP/RCP grafting (2.2-fold, P < 0.05) than after no grafting. Histological findings showed that the transplanted ß-TCP/RCP induced active bone-like tissue formation including tartaric acid-resistant acid phosphatase- and OCN-positive cells as well as bioabsorbability. Ankylosis did not occur, and periostin-positive periodontal ligament-like tissue formation was observed. Histological measurements performed at 8 weeks postoperative revealed that ß-TCP/RCP implantation formed 1.7-fold more bone-like tissue and 2.1-fold more periodontal ligament-like tissue than the control condition and significantly suppressed gingival recession and epithelial downgrowth (P < 0.05). CONCLUSIONS: ß-TCP/RCP implantation promoted bone-like and periodontal ligament-like tissue formation, suggesting its efficacy as a periodontal tissue regenerative material.


Subject(s)
Bone Regeneration , Tooth Ankylosis , Dogs , Humans , Animals , X-Ray Microtomography , Collagen/pharmacology , Recombinant Proteins/pharmacology , Peptides/pharmacology
2.
J Periodontal Res ; 57(1): 205-218, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34786723

ABSTRACT

BACKGROUND AND OBJECTIVES: In the treatment of severe periodontal destruction, there is a strong demand for advanced scaffolds that can regenerate periodontal tissues with adequate quality and quantity. Recently, we developed a plasma- and precursor-assisted biomimetic process by which a porous collagen scaffold (CS) could be coated with low-crystalline apatite. The apatite-coated collagen scaffold (Ap-CS) promotes cellular ingrowth within the scaffold compared to CS in rat subcutaneous tissue. In the present study, the osteogenic activity of Ap-CS was characterized by cell culture and rat skull augmentation tests. In addition, the periodontal tissue reconstruction with Ap-CS in a beagle dog was compared to that with CS. METHODS: The plasma- and precursor-assisted biomimetic process was applied to CS to obtain Ap-CS with a low-crystalline apatite coating. The effects of apatite coating on the scaffold characteristics (i.e., surface morphology, water absorption, Ca release, protein adsorption, and enzymatic degradation resistance) were assessed. Cyto-compatibility and the osteogenic properties of Ap-CS and CS were assessed in vitro using preosteoblastic MC3T3-E1 cells. In addition, we performed in vivo studies to evaluate bone augmentation and periodontal tissue reconstruction with Ap-CS and CS in a rat skull and canine furcation lesion, respectively. RESULTS: As previously reported, the plasma- and precursor-assisted biomimetic process generated a low-crystalline apatite layer with a nanoporous structure that uniformly covered the Ap-CS surface. Ap-CS showed significantly higher water absorption, Ca release, lysozyme adsorption, and collagenase resistance than CS. Cell culture experiments revealed that Ap-CS was superior to CS in promoting the osteoblastic differentiation of MC3T3-E1 cells while suppressing their proliferation. Additionally, Ap-CS significantly promoted (compared to CS) the augmentation of the rat skull bone and showed the potential to regenerate alveolar bone in a dog furcation defect. CONCLUSION: Ap-CS fabricated by the plasma- and precursor-assisted biomimetic process provided superior promotion of osteogenic differentiation and bone neoformation compared to CS.


Subject(s)
Apatites , Tissue Engineering , Animals , Biomimetics , Bone Regeneration , Collagen , Dogs , Osteogenesis , Rats , Tissue Scaffolds
3.
Materials (Basel) ; 14(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34640257

ABSTRACT

Surface-mineralized collagen sponges have attracted much attention as scaffolds for bone tissue engineering. Recently, we developed amorphous calcium phosphate (ACP) and low-crystalline apatite coating processes on collagen sponges. In the present study, we applied these coating processes to granular collagen sponges (referred to as Col) to compare the bone tissue regeneration capabilities of ACP-coated and apatite-coated Col (referred to as Col-ACP and Col-Ap, respectively) using a rat cranial bone defect model. According to micro-CT and histological analyses, Col-Ap enhanced bone tissue regeneration compared to Col, whereas Col-ACP did not. These results not only demonstrated the superior bone tissue regeneration capability of Col-Ap, but also indicated limitations of the in vitro simulated body fluid (SBF) test used in our previous study. Despite the apatite-forming ability of Col-ACP in SBF, it was ineffective in improving bone tissue regeneration in vivo, unlike Col-Ap, most likely due to the quick resorption of the ACP coating in the defect site. The present results clarified the importance of the coating stability in vivo and revealed that the low-crystalline apatite coating was more beneficial than the ACP coating in the fabrication of surface-mineralized collagen sponges for use as bone tissue engineering scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL
...