Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Bull ; 244(3): 201-216, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38457679

ABSTRACT

AbstractRhizocephalan barnacles are parasites of crustaceans that are known for dramatic effects on hosts, including parasitic castration, feminization, molt inhibition, and the facilitation of epibiosis. Most research on rhizocephalans has focused on carcinized hosts, with relatively little research directed to shrimp hosts that may experience distinct consequences of infection. Here, we describe a high-prevalence rhizocephalan-shrimp system in which multiple host changes are associated with infection: the dock shrimp Pandalus danae infected by the rhizocephalan Sylon hippolytes. In field-collected P. danae, infection by Sylon was associated with development of female sex characters at a smaller size and greater probability of epibiosis. Standardized video observations showed that infected P. danae performed grooming activities at higher rates than uninfected shrimp, suggesting that inhibited molting rather than direct behavioral modification is a likely mechanism for higher epibiosis rates. There was no difference in the composition of grooming behavior types or in general activity between infected and uninfected shrimp. Fatty acid compositions differed with infection, but total lipid concentrations did not, suggesting that parasite-driven shifts in host resource allocation were compensated or redirected from unmeasured tissues. Our results show that Sylon alters its host's role by provisioning an epibiotic substrate and also that it influences host physiology, resulting in feminization and fatty acid shifts. This study lays the groundwork for expanding rhizocephalan-shrimp research and encourages recognition of oft-ignored roles of parasitism in ecological communities.


Subject(s)
Parasites , Thoracica , Male , Humans , Animals , Female , Host-Parasite Interactions , Feminization , Thoracica/physiology , Fatty Acids
2.
Proc Biol Sci ; 286(1912): 20191718, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31594507

ABSTRACT

Outbreaks of marine infectious diseases have caused widespread mass mortalities, but the lack of baseline data has precluded evaluating whether disease is increasing or decreasing in the ocean. We use an established literature proxy method from Ward and Lafferty (Ward and Lafferty 2004 PLoS Biology2, e120 (doi:10.1371/journal.pbio.0020120)) to analyse a 44-year global record of normalized disease reports from 1970 to 2013. Major marine hosts are combined into nine taxonomic groups, from seagrasses to marine mammals, to assess disease swings, defined as positive or negative multi-decadal shifts in disease reports across related hosts. Normalized disease reports increased significantly between 1970 and 2013 in corals and urchins, indicating positive disease swings in these environmentally sensitive ectotherms. Coral disease reports in the Caribbean correlated with increasing temperature anomalies, supporting the hypothesis that warming oceans drive infectious coral diseases. Meanwhile, disease risk may also decrease in a changing ocean. Disease reports decreased significantly in fishes and elasmobranchs, which have experienced steep human-induced population declines and diminishing population density that, while concerning, may reduce disease. The increases and decreases in disease reports across the 44-year record transcend short-term fluctuations and regional variation. Our results show that long-term changes in disease reports coincide with recent decades of widespread environmental change in the ocean.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Animals , Anthozoa , Caribbean Region , Climate Change , Fishes , Oceans and Seas , Population Density , Temperature
3.
PLoS One ; 11(10): e0163190, 2016.
Article in English | MEDLINE | ID: mdl-27783620

ABSTRACT

Sea star wasting disease devastated intertidal sea star populations from Mexico to Alaska between 2013-15, but little detail is known about its impacts to subtidal species. We assessed the impacts of sea star wasting disease in the Salish Sea, a Canadian / United States transboundary marine ecosystem, and world-wide hotspot for temperate asteroid species diversity with a high degree of endemism. We analyzed roving diver survey data for the three most common subtidal sea star species collected by trained volunteer scuba divers between 2006-15 in 5 basins and on the outer coast of Washington, as well as scientific strip transect data for 11 common subtidal asteroid taxa collected by scientific divers in the San Juan Islands during the spring/summer of 2014 and 2015. Our findings highlight differential susceptibility and impact of sea star wasting disease among asteroid species populations and lack of differences between basins or on Washington's outer coast. Specifically, severe depletion of sunflower sea stars (Pycnopodia helianthoides) in the Salish Sea support reports of major declines in this species from California to Alaska, raising concern for the conservation of this ecologically important subtidal predator.


Subject(s)
Starfish/growth & development , Wasting Syndrome/pathology , Animals , Canada , Conservation of Natural Resources , Ecosystem , Models, Theoretical , Odds Ratio , Seasons , Species Specificity , Wasting Syndrome/veterinary
4.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26880844

ABSTRACT

Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19 °C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2-3 °C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.


Subject(s)
Animal Diseases/pathology , Starfish , Animals , Host-Pathogen Interactions , Population Density , Temperature , Time Factors
5.
Mar Pollut Bull ; 104(1-2): 313-21, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26781454

ABSTRACT

Sewage pollution threatens the health of coastal populations and ecosystems, including coral reefs. We investigated spatial patterns of sewage pollution in Puako, Hawaii using enterococci concentrations and δ(15)N Ulva fasciata macroalgal bioassays to assess relationships with the coral disease Porites lobata growth anomalies (PGAs). PGA severity and enterococci concentrations were high, spatially variable, and positively related. Bioassay algal δ(15)N showed low sewage pollution at the reef edge while high values of resident algae indicated sewage pollution nearshore. Neither δ(15)N metric predicted PGA measures, though bioassay δ(15)N was negatively related to coral cover. Furthermore, PGA prevalence was much higher than previously recorded in Hawaii and the greater Indo-Pacific, highlighting Puako as an area of concern. Although further work is needed to resolve the relationship between sewage pollution and coral cover and disease, these results implicate sewage pollution as a contributor to diminished reef health.


Subject(s)
Anthozoa/growth & development , Coral Reefs , Environmental Monitoring/methods , Sewage/statistics & numerical data , Water Pollution/analysis , Animals , Ecosystem , Hawaii , Sewage/analysis , Water Pollution/statistics & numerical data , Water Quality
6.
PLoS One ; 10(7): e0133053, 2015.
Article in English | MEDLINE | ID: mdl-26176852

ABSTRACT

Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 µm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.


Subject(s)
Immune System/metabolism , Nervous System/metabolism , Starfish/virology , Wasting Syndrome/immunology , Wasting Syndrome/veterinary , Animals , Complement System Proteins/genetics , Complement System Proteins/immunology , Densovirus/pathogenicity , Densovirus/physiology , Gene Expression Profiling , Gene Expression Regulation , Immune System/virology , Molecular Sequence Annotation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/immunology , Nervous System/immunology , Nervous System/virology , Pacific Ocean , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Wasting Syndrome/pathology , Wasting Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...