Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Int J Biol Macromol ; 254(Pt 2): 127641, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913875

ABSTRACT

Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.


Subject(s)
Fibroins , Nanofibers , Humans , Fibroins/chemistry , Tissue Engineering/methods , Biocompatible Materials/chemistry , Drug Delivery Systems , Nanofibers/chemistry , Polymers , Silk/chemistry , Tissue Scaffolds/chemistry
2.
J Biomater Sci Polym Ed ; 33(12): 1511-1530, 2022 08.
Article in English | MEDLINE | ID: mdl-35451917

ABSTRACT

Wound healing is a complex biological process. In this context, hyaluronic acid (HA) plays an important role in all phases of wound healing, from inflammation to the remodelling process. Nevertheless, its presence in adults decreases by 50% compared to newborns, which drastically reduces tissue regeneration. In this sense, this work presented a new method of extracting HA from chicken combs, as well as the development and in vivo evaluation of an ointment composed of vaseline, lanolin and HA 1% (w/w) for wound healing. The rheological analysis showed that the ointment containing HA has a viscoelastic behaviour. The in vivo test showed on the 7th day that the group treated with the ointment containing HA had a wound area of 0.07 cm2 against 0.09 cm2 of the ointment without HA (vaseline, and lanolin). On the other hand, the groups treated with the HA ointment had a higher mean percentage of collagen and better healing on the 14th day. The results of this paper indicate that the new method used to obtain HA is feasible, low-cost, and easy to obtain. Furthermore, the HA containing ointment improved wound healing. Therefore, the obtained ointment has great potential for use as an effective biomaterial in wound healing.


Subject(s)
Hyaluronic Acid , Lanolin , Ointments , Petrolatum , Wound Healing
3.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268986

ABSTRACT

Composites of magnetite nanoparticles encapsulated with polymers attract interest for many applications, especially as theragnostic agents for magnetic hyperthermia, drug delivery, and magnetic resonance imaging. In this work, magnetite nanoparticles were synthesized by coprecipitation and encapsulated with different polymers (Eudragit S100, Pluronic F68, Maltodextrin, and surfactants) by nano spray drying technique, which can produce powders of nanoparticles from solutions or suspensions. Transmission and scanning electron microscopy images showed that the bare magnetite nanoparticles have 10.5 nm, and after encapsulation, the particles have approximately 1 µm, with size and shape depending on the material's composition. The values of magnetic saturation by SQUID magnetometry and mass residues by thermogravimetric analysis were used to characterize the magnetic content in the materials, related to their magnetite/polymer ratios. Zero-field-cooling and field-cooling (ZFC/FC) measurements showed how blocking temperatures of the powders of the composites are lower than that of bare magnetite, possibly due to lower magnetic coupling, being an interesting system to study magnetic interactions of nanoparticles. Furthermore, studies of cytotoxic effect, hydrodynamic size, and heating capacity for hyperthermia (according to the application of an alternate magnetic field) show that these composites could be applied as a theragnostic material for a non-invasive administration such as nasal.

4.
Braz. arch. biol. technol ; 55(1): 145-149, Jan.-Feb. 2012. ilus, tab
Article in English | LILACS | ID: lil-622692

ABSTRACT

This work assessed the bioremediation of herbicide Velpar K®, in vitro in aqueous solution, used against weeds in sugar cane in São Paulo state. The herbicide contained Hexazinone and Diuron. It was used the microbial inoculant denominated Effective Microorganisms (EM-4), pool of microorganisms from soil that contained lactic and photosynthetic bacteria, fungi, yeasts and actinomycetes for bioremediation. Results for the depth of cultivation on agar-agar inoculated with EM-4 showed the microorganisms growth in the concentrations between 0.2% and 1.0% of the Velpar K®in the gel. The analysis of high performance liquid chromatography (HPLC) showed that the EM-4 was effective for the bioremediation of the herbicide, which reached the values of 80% for diuron and 70% for hexazinone after 21 days in solution of 2:1 of Velpar K®/EM-4 ratio. These results could be useful for planning the bioremediation of contaminated areas with Velpar K®.

SELECTION OF CITATIONS
SEARCH DETAIL
...