Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(4): 2529-2548, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38331432

ABSTRACT

Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 µM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies.


Subject(s)
Azetidines , Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Azetidines/pharmacology , Azetidines/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Extensively Drug-Resistant Tuberculosis/drug therapy , Microbial Sensitivity Tests
2.
Polymers (Basel) ; 15(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679299

ABSTRACT

Ionic liquids (ILs) are recyclable, non-volatile, and can dissolve cellulose, a natural polymer that is insoluble in versatile solvents. Therefore, ILs have been used to modify cellulose. However, 1-ethyl-3-methylimidazolium acetate (EmimOAc), a commercially available IL often used to dissolve and modify cellulose to prepare cellulose-based materials, causes the undesired introduction of an acetyl group derived from the acetate anion of EmimOAc onto the hydroxy group of cellulose during esterification. In this study, for cellulose esterification, we prepared aryloxy ILs as non-carboxylate-type and basic ILs, which can theoretically prevent the undesired introduction of an acyl group from the IL onto the hydroxy group of cellulose. The optimized 1-ethyl-3-methylimidazolium 2-pyridinolate (Emim2OPy) and mixed solvent system achieved rapid cellulose esterification (within 30 min) with an excellent degree of substitution (DS) value (up to >2.9) derived from the employed low-reactive vinyl esters and bio-based unsaturated aldehydes, without any undesired substituent introduction from side reactions.

3.
Front Chem ; 6: 211, 2018.
Article in English | MEDLINE | ID: mdl-29977888

ABSTRACT

Seven N,N'-palladium(II) chloride complexes, one N,N'-palladium(II) acetate complex of 2,4-cis-azetidines where prepared and analyzed by single crystal XRD. Two platinum(II) chloride N,N'-complexes of 2,4-cis-azetidines where prepared and analyzed by single crystal XRD. Computational analysis and determination of the %Vbur was examined conducted. A CNN' metallocyclic complex was prepared by oxidative addition of palladium(0) to an ortho bromo 2,4-cis-disubstituted azetidine and its crystal structure displays a slightly pyramidalized metal-ligand orientation.

4.
Sci Rep ; 8(1): 6541, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29695806

ABSTRACT

A series of single enantiomer, 2,4-cis-disubstituted amino azetidines were synthesised and used as ligands for copper-catalysed Henry reactions of aldehydes with nitromethane. Optimisation of ligand substituents and the reaction conditions was conducted. The enantiomeric excess of the formed products was highest when alkyl aldehydes were employed in the reaction (>99% e.e.). The absolute stereochemistry of one representative azetidine derivative salt was determined by analysis of the Flack parameter of an XRD single crystal structure. The origin of selectivity in catalysis was investigated computationally, revealing the importance of the amino-substituent in determining the stereochemical outcome. A racemic platinum complex of a cis-disubstituted azetidine is examined by XRD single crystal structure analysis with reference to its steric parameters, and analogies to the computationally determined copper complex catalyst are drawn. A preliminary example of the use of a cis-disubstituted azetidine scaffold in thiourea H-bonding catalyst is noted in the supporting information.

5.
Chem Asian J ; 5(3): 621-33, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20108302

ABSTRACT

Treatment of the heterobimetallic iron(II) alkoxides [(THF)MFe(OtBu)(3)](2) with p-tert-butylcalix[4]areneH(4) (L(1)H(4)) affords the oxo-bridged diiron(III) complexes {Fe[M(NCMe)(x)](2)L(1)}(2)(mu-O), M = Na, x = 2 1 x 8(CH(3)CN), M = K, x = 3 2 x 3.5(CH(3)CN); similar use of p-tert-butylcalix[6]areneH(6) (L(2)H(6)) afforded [{Fe(2)(mu-O)Na(2)(OH(2))(NCMe)(2)L(2)}(2)][{Fe(2)(mu-O)Na(OH(2))(NCMe)(6)L(2)}(2)](2-)[Na(NCMe)(5)](2)(2+) 3 x 9.46(CH(3)CN) and [{Fe(2)(mu-O)L(2)(K(NCMe)(2))(2)}(2)] 4 x 10.8(MeCN), respectively. In the case of 4, a minor product {(L(2)(2)Fe(8)O(8))[K(NCMe)(1.5)K(H(2)O)(NCMe)(2.5)](2)} 5 x 6(CH(3)CN), which is comprised of chains of (L(2)(2)Fe(8)O(8)) clusters bridged by K/MeCN fragments, is also isolated. Use of p-tert-butylcalix[8]areneH(8) (L(3)H(8)) and two equivalents of [(THF)KFe(OtBu)(3)](2) affords [(K(2)(mu-NCCH(3))(4)(mu-OH(2)))(2)(Fe(2)(mu-O)L(3)H(2))(2)(CH(3)CN)(2)] 6 x 9(CH(3)CN). In the case of p-tert-butyltetrahomodioxacalix[6]areneH(6) (L(4)H(6)), reaction with [(THF)MFe(OtBu)(3)](2) (two equivalents) leads to isolation of the pseudoisomorphic complexes [M(2)(CH(3)CN)(4)L(4)Fe(2)(mu-O)] x 4 CH(3)CN M = Na 7 x 4(CH(3)CN), M = K 8 x 2(CH(3)CN); similar use of p-tert-butylhexahomotrioxacalix[3]areneH(3) (L(5)H(3)) led to [Na(2)Fe(2)(mu-OH)(2)(L(5))(2)(CH(3)CN)(4)] 9 x 2(CH(2)Cl(2)). The complex [L(4)(ZnEt)(4)Zn(2)(CH(3)CN)(4)(mu-OEt)(2)], 10 x 2(CH(3)CN), isolated from the reaction of L(4)H(6) and ZnEt(2) is also reported. Complexes 1-10 are structurally characterized (partially in the case of 4) and screened (not 5) as catalysts for the ring opening polymerization of epsilon-caprolactone.


Subject(s)
Calixarenes/chemistry , Organometallic Compounds/chemical synthesis , Caproates/chemistry , Iron/chemistry , Lactones/chemistry , Molecular Structure , Polymers/chemical synthesis , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...