Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 8: txae062, 2024.
Article in English | MEDLINE | ID: mdl-38863596

ABSTRACT

Information about the full spectrum of metabolites present in porcine colostrum and factors that influence metabolite abundances is still incomplete. Parity number appears to modulate the concentration of single metabolites in colostrum. This study aimed to 1) characterize the metabolome composition and 2) assess the effect of parity on metabolite profiles in porcine colostrum. Sows (n = 20) were divided into three parity groups: A) sows in parity 1 and 2 (n = 8), B) sows in parity 3 and 4 (n = 6), and C) sows in parity 5 and 6 (n = 6). Colostrum was collected within 12 h after parturition. A total of 125 metabolites were identified using targeted reversed-phase high-performance liquid chromatography-tandem mass spectrometry and anion-exchange chromatography-high resolution mass spectrometry. Gas chromatography additionally identified 19 fatty acids (FAs). Across parities, colostrum was rich in creatine and creatinine, 1,3-dioleyl-2-palmitatoylglycerol, 1,3-dipalmitoyl-2-oleoylglycerol, and sialyllactose. Alterations in colostrum concentrations were found for eight metabolites among parity groups (P < 0.05) but the effects were not linear. For instance, colostrum from parity group C comprised 75.4% more valine but 15.7%, 34.1%, and 47.9% less citric, pyruvic, and pyroglutamic acid, respectively, compared to group A (P < 0.05). By contrast, colostrum from parity group B contained 39.5% more spermidine than from group A (P < 0.05). Of the FAs, C18:1, C16:0, and C18:2 n6 were the main FAs across parities. Parity affected four FAs (C18:3n3, C14:1, C17:0ai, and C17:1), including 43.1% less α-linolenic acid (C18:3n3) in colostrum from parity group C compared to groups A and B (P < 0.05). Signature feature ranking identified 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine and the secondary bile acid hyodeoxycholic acid as the most discriminative metabolites, showing a higher variable importance in the projection score in colostrum from parity group A than from groups B and C. Overall, results provided a comprehensive overview about the metabolome composition of sow colostrum. The consequences of the changes in colostrum metabolites with increasing parity for the nutrient supply of the piglets should be investigated in the future. The knowledge gained in this study could be used to optimize feeding strategies for sows.

2.
Front Vet Sci ; 10: 1184277, 2023.
Article in English | MEDLINE | ID: mdl-37720467

ABSTRACT

Little information is available on age- and creep-feeding-related microbial and immune development in neonatal piglets. Therefore, we explored age- and gut-site-specific alterations in the microbiome, metabolites, histo-morphology, and expression of genes for microbial signaling, as well as immune and barrier function in suckling and newly weaned piglets that were receiving sow milk only or were additionally offered creep feed from day of life (DoL) 10. The experiment was conducted in two replicate batches. Creep feed intake was estimated at the litter level. Piglets were weaned on day 28 of life. Gastric and cecal digesta and jejunal and cecal tissue were collected on DoL 7, 14, 21, 28, 31, and 35 for microbial and metabolite composition, histomorphology, and gene expression. In total, results for 10 piglets (n = 5/sex) per dietary group (sow milk only versus additional creep feed) were obtained for each DoL. The creep feed intake was low at the beginning and only increased in the fourth week of life. Piglets that were fed creep feed had less lactate and acetate in gastric digesta on DoL 28 compared to piglets fed sow milk only (p < 0.05). Age mainly influenced the gastric and cecal bacteriome and cecal mycobiome composition during the suckling phase, whereas the effect of creep feeding was small. Weaning largely altered the microbial communities. For instance, it reduced gastric Lactobacillaceae and cecal Bacteroidaceae abundances and lowered lactate and short-chain fatty acid concentrations on DoL 31 (p < 0.05). Jejunal and cecal expression of genes related to microbial and metabolite signaling, and innate immunity showed age-related patterns that were highest on DoL 7 and declined until DoL 35 (p < 0.05). Weaning impaired barrier function and enhanced antimicrobial secretion by lowering the expression of tight junction proteins and stimulating goblet cell recruitment in the jejunum and cecum (p < 0.05). Results indicated that age-dependent alterations, programmed genetically and by the continuously changing gut microbiome, had a strong impact on the expression of genes for gut barrier function, integrity, innate immunity, and SCFA signaling, whereas creep feeding had little influence on the microbial and host response dynamics at the investigated gut sites.

3.
Animals (Basel) ; 13(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37508029

ABSTRACT

Feces enable frequent samplings for the same animal, which is valuable in studies investigating the development of the gut microbiome in piglets. Creep feed should prepare the piglet's gut for the postweaning period and shape the microbiome accordingly. Little is known about the variation that is caused by differences in fecal color and consistency and different sample types (feces versus swab samples). Therefore, this study evaluated the age-related alterations in the microbiome composition (16S rRNA gene) in feces of suckling and newly weaned piglets in the context of nutrition and fecal consistency, color and sample type from day 2 to 34 of life. Feces from 40 healthy piglets (2 each from 20 litters) were collected on days 2, 6, 13, 20, 27, 30 and 34. Weaning occurred on day 28. Half of the litters only drank sow milk during the suckling phase, whereas the other half had access to creep feed from day 10. Creep feeding during the suckling phase influenced the age-related total bacterial and archaeal abundances but had less of an influence on the relative bacterial composition. Results further showed different taxonomic compositions in feces of different consistency, color and sample type, emphasizing the need to consider these characteristics in comprehensive microbiome studies.

4.
Animals (Basel) ; 13(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37370480

ABSTRACT

Data published in the literature about the favorable effects of dietary probiotics on gut health in broiler chickens are inconsistent. To obtain a more comprehensive understanding, we conducted a meta-analysis to assess the effects of probiotics on the gut barrier and immune-related gene expression, histomorphology, and growth in chickens that were either challenged or non-challenged with pathogens. From the 54 articles published between 2012 and 2022, subsets of data, separately for non-challenged and challenged conditions, for response variables were created. The mean dietary probiotic concentrations ranged from 4.7 to 6.2 and 4.7 to 7.2 log10 colony-forming unit/kg under non-challenged and challenged conditions, respectively. Probiotics increased the expression of genes for mucins and tight junction proteins in the jejunum and ileum at weeks 3 and 6. The stimulatory effect of probiotics on tight junction protein expression was partly stronger in challenged than in non-challenged birds. Meta-regressions also showed an anti-inflammatory effect of probiotics under challenged conditions by modulating the expression of cytokines. Probiotics improved villus height at certain ages in the small intestine while not influencing growth performance. Dietary metabolizable energy, crude protein, and days post-infection modified the effects of probiotics on the observed variables. Overall, meta-regressions support the beneficial effects of probiotics on gut integrity and structure in chickens.

5.
Metabolites ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36837833

ABSTRACT

Data on the evolution of blood metabolites and metabolic markers in neonatal piglets are scarce, although this information is vital to detect physiological aberrations from normal development. We aimed to characterize age- and nutrition-related changes in the plasma metabolome and serum biochemistry of suckling and newly weaned piglets and assess metabolite patterns as physiological markers for the two phases. In two replicate batches (n = 10 litters/group), piglets either received sow milk alone or were additionally offered creep feed from day 10 until weaning (day 28). Blood was collected from one piglet/litter on days 7, 14, 21, 28, 31 and 35 of life, totaling five females and five males/group/day. Signature feature ranking identified plasma triglycerides (TG) as discriminative for age and nutrition during the suckling phase. Influential TG 20:4_36:5, TG 17:0_34:2 and TG 18:2_38:6 were higher in creep-fed piglets on days 14, 21 and 28 of life, respectively, compared to only sow milk-fed piglets. Metabolites belonging to pathways within histidine, D-glutamine and D-glutamate metabolism as well as hippuric acid were distinctive for the postweaning compared to the suckling period. In conclusion, plasma lipid profiles especially corresponded to the type of nutrition in the suckling phase and showed a strong weaning effect.

6.
Trop Anim Health Prod ; 54(1): 65, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35041092

ABSTRACT

The aim of this study was to evaluate the effect of supplementation of organic acid and probiotic derived from grass silage on the egg quality of duck. Seventy-two Pegagan laying ducks (average age: 24 weeks) were randomly allocated to six treatment groups: basal diet, basal diet + organic acid, basal diet + probiotic, basal diet + tetracycline, basal diet + probiotic + organic acid, and basal diet + organic acid + tetracycline. The result showed that the feeding diets containing probiotics and organic acid significantly (P < 0.05) reduced yolk fat and yolk cholesterol and increased eggshell weight, egg index, yolk color score, Haugh unit, and protein content. However, egg weight, albumen weight, yolk weight, albumen index, yolk index, and water content were not significantly (P > 0.05) different. It is concluded that dietary supplementation of organic acid and probiotic derived from grass silage improved egg quality in terms of yolk color score, fat, and cholesterol content.


Subject(s)
Ducks , Probiotics , Animal Feed/analysis , Animals , Diet , Dietary Supplements , Egg Yolk , Ovum , Poaceae , Silage
SELECTION OF CITATIONS
SEARCH DETAIL
...