Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30232547

ABSTRACT

Naked mole-rats are extremely social and extremely vocal rodents, displaying a wide range of functionally distinct call types and vocalizing almost continuously. Their vocalizations are low frequency, and a behavioral audiogram has shown that naked mole-rats, like other subterranean mammals, hear only low frequencies. Hence, the frequency range of their hearing and vocalizations appears to be well matched. However, even at low frequencies, naked mole-rats show very poor auditory thresholds, suggesting vocal communication may be effective only over short distances. However, in a tunnel environment where low frequency sounds propagate well and background noise is low, it may be that vocalizations travel considerable distances at suprathreshold intensities. Here, we confirmed hearing sensitivity using the auditory brainstem response; we characterized signature and alarm calls in intensity and frequency domains and we measured the effects of propagation through tubes with the diameter of naked mole-rat tunnels. Signature calls-used for intimate communication-could travel 3-8 m at suprathreshold intensities, and alarm calls (lower frequency and higher intensity), could travel up to 15 m. Despite this species' poor hearing sensitivity, the naked mole-rat displays a functional, coupled auditory-vocal communication system-a hallmark principle of acoustic communication systems across taxa.


Subject(s)
Auditory Perception/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Mole Rats/physiology , Vocalization, Animal/physiology , Acoustics , Animals , Brain Stem/physiology , Female , Gerbillinae/physiology , Male , Social Behavior , Sound Spectrography
2.
Article in English | MEDLINE | ID: mdl-22080355

ABSTRACT

Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.


Subject(s)
Behavior, Animal/physiology , Hierarchy, Social , Mole Rats/physiology , Prefrontal Cortex/physiology , Social Behavior , Vocalization, Animal/physiology , Animals , Denervation , Mole Rats/anatomy & histology , Prefrontal Cortex/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...