Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Nano ; 16(9): 15249-15260, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36075111

ABSTRACT

Ion-surface interactions can alter the properties of nanopores and dictate nanofluidic transport in engineered and biological systems central to the water-energy nexus. The ion adsorption process, known as "charge regulation", is ion-specific and is dependent on the extent of confinement when the electric double layers (EDLs) between two charged surfaces overlap. A fundamental understanding of the mechanisms behind charge regulation remains lacking. Herein, we study the thermodynamics of charge regulation reactions in 20 nm SiO2 channels via conductance measurements at various concentrations and temperatures. The effective activation energies (Ea) for ion conductance at low concentrations (strong EDL overlap) are ∼2-fold higher than at high concentrations (no EDL overlap) for the electrolytes studied here: LiCl, NaCl, KCl, and CsCl. We find that Ea values measured at high concentrations result from the temperature dependence of viscosity and its influence on ion mobility, whereas Ea values measured at low concentrations result from the combined effects of ion mobility and the enthalpy of cation adsorption to the charged surface. Notably, the Ea for surface reactions increases from 7.03 kJ mol-1 for NaCl to 16.72 ± 0.48 kJ mol-1 for KCl, corresponding to a difference in surface charge of -8.2 to -0.8 mC m-2, respectively. We construct a charge regulation model to rationalize the cation-specific charge regulation behavior based on an adsorption equilibrium. Our findings show that temperature- and concentration-dependent conductance measurements can help indirectly probe the ion-surface interactions that govern transport and colloidal interactions at the nanoscale─representing a critical step forward in our understanding of charge regulation and adsorption phenomena under nanoconfinement.


Subject(s)
Silicon Dioxide , Sodium Chloride , Cations , Electrolytes , Ion Transport , Thermodynamics , Water
3.
Biosensors (Basel) ; 12(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35735517

ABSTRACT

In this paper, a potentiometric method is used for monitoring the concentration of glutamine in the bioprocess by employing silicon nanowire biosensors. Just one hydrolyzation reaction was used, which is much more convenient compared with the two-stage reactions in the published papers. For the silicon nanowire biosensor, the Al2O3 sensing layer provides a highly sensitive to solution-pH, which has near-Nernstian sensitivity. The sensitive region to detect glutamine is from ≤40 µM to 20 mM. The Sigmoidal function was used to model the pH-signal variation versus the glutamine concentration. Compared with the amperometric methods, a consistent result from different devices could be directly obtained. It is a fast and direct method achieved with our real-time setup. Also, it is a label-free method because just the pH variation of the solution is monitored. The obtained results show the feasibility of the potentiometric method for monitoring the glutamine concentrations in fermentation processes. Our approach in this paper can be applied to various analytes.


Subject(s)
Biosensing Techniques , Nanowires , Biosensing Techniques/methods , Glutamine , Silicon , Transistors, Electronic
4.
Adv Mater ; 34(29): e2109661, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35165959

ABSTRACT

The ability to rapidly assess and monitor patient immune responses is critical for clinical diagnostics, vaccine design, and fundamental investigations into the presence or generation of protective immunity against infectious diseases. Recently, findings on the limits of antibody-based protection provided by B-cells have highlighted the importance of engaging pathogen-specific T-cells for long-lasting and broad protection against viruses and their emergent variants such as in SARS-CoV-2. However, low-cost and point-of-care tools for detecting engagement of T-cell immunity in patients are conspicuously lacking in ongoing efforts to assess and control population-wide disease risk. Currently available tools for human T-cell analysis are time and resource-intensive. Using multichannel silicon-nanowire field-effect transistors compatible with complementary metal-oxide-semiconductor, a device designed for rapid and label-free detection of human T-cell immune responses is developed. The generalizability of this approach is demonstrated by measuring T-cell responses against melanoma antigen MART1, common and seasonal viruses CMV, EBV, flu, as well as emergent pandemic coronavirus, SARS-CoV-2. Further, this device provides a modular and translational platform for optimizing vaccine formulations and combinations, offering quick and quantitative readouts for acquisition and persistence of T-cell immunity against variant-driven pathogens such as flu and pandemic SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Nanowires , Antiviral Agents , COVID-19/diagnosis , Humans , SARS-CoV-2 , T-Lymphocytes
5.
J Chem Phys ; 154(20): 204704, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34241182

ABSTRACT

Carbon nanotube porins (CNTPs) are biomimetic membrane channels that demonstrate excellent biocompatibility and unique water and ion transport properties. Gating transport in CNTPs with external voltage could increase control over ion flow and selectivity. Herein, we used continuum modeling to probe the parameters that enable and further affect CNTP gating efficiency, including the size and composition of the supporting lipid membrane, slip flow in the carbon nanotube, and the intrinsic electronic properties of the nanotube. Our results show that the optimal gated CNTP device consists of a semiconducting CNTP inserted into a small membrane patch containing an internally conductive layer. Moreover, we demonstrate that the ionic transport modulated by gate voltages is controlled by the charge distribution along the CNTP under the external gate electric potential. The theoretical understanding developed in this study offers valuable guidance for the design of gated CNTP devices for nanofluidic studies, novel biomimetic membranes, and cellular interfaces in the future.


Subject(s)
Molecular Dynamics Simulation , Nanotubes, Carbon/chemistry , Porins/chemistry , Ion Transport , Static Electricity
6.
Lab Chip ; 20(19): 3644-3652, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32901637

ABSTRACT

Smart-agriculture technologies comprise a set of management systems designed to sustainably increase the efficiency and productivity of farming. In this paper, we present a lab-on-a-chip device that can be employed as a plant disease forecasting tool for canola crop. Our device can be employed as a platform to forecast potential outbreaks of one of the most devastating diseases of canola and other crops, Sclerotinia stem rot. The system consists of a microfluidic chip capable of detecting single airborne Sclerotinia sclerotiorum ascospores. Target ascospores are injected into the chip and selectively captured by dielectrophoresis, while other spores in the sample are flushed away. Afterward, captured ascospores are released into the flow stream of the channel and are detected employing electrochemical impedance spectroscopy and coplanar microelectrodes. Our device provides a design for a low-cost, miniaturized, and automated platform technology for airborne spore detection and disease prevention.


Subject(s)
Ascomycota , Brassica napus , Plant Diseases , Spores, Fungal
7.
Biosens Bioelectron ; 168: 112507, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32905926

ABSTRACT

Microfabricated Coulter counters are attractive for point of care (POC) applications since they are label free and compact. However, these approaches inherently suffer from a trade off between sample throughput and sensitivity. The counter measures a change in impedance due to displaced fluid volume by passing cells, and thus the counter's signal increases with the fraction of the sensing volume displaced. Reducing the size of the sensing region requires reductions in volumetric throughput in the absence of increased hydraulic pressure and sensor bandwidth. The risk of mechanical clog formation, rendering the counter inoperable, increases markedly with reductions in the size of the constriction aperture. We present here a microfluidic coplanar Coulter counter device design that overcomes the problem of constriction clogging while capable of operating in microfluidic channels filled entirely with highly conductive sample. The device utilizes microfabricated planar electrodes projecting into one side of the microfluidic channel and is easily integrated with upstream electronic, hydrodynamic, or other focusing units to produce efficient counting which could allow for dramatically increased volumetric and sample throughput. The design lends itself to simple, cost effective POC applications.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Electronics , Equipment Design , Hydrodynamics , Microfluidics
8.
ACS Nano ; 14(7): 8646-8657, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32530598

ABSTRACT

The sensitivity and speed with which the immune system reacts to host disruption is unrivaled by any detection method for pathogenic biomarkers or infectious signatures. Engagement of cellular immunity in response to infections or cancer is contingent upon activation and subsequent cytotoxic activity by T cells. Thus, monitoring T cell activation can reliably serve as a metric for disease diagnosis as well as therapeutic prognosis. Rapid and direct quantification of T cell activation states, however, has been hindered by challenges associated with antigen target identification, labeling requirements, and assay duration. Here we present an electronic, label-free method for simultaneous separation and evaluation of T cell activation states. Our device utilizes a microfluidic design integrated with nanolayered electrode structures for dielectrophoresis (DEP)-driven discrimination of activated vs naïve T cells at single-cell resolution and demonstrates rapid (<2 min) separation of T cells at high single-pass efficiency as quantified by an on-chip Coulter counter module. Our device represents a microfluidic tool for electronic assessment of immune activation states and, hence, a portable diagnostic for quantitative evaluation of immunity and disease state. Further, its ability to achieve label-free enrichment of activated immune cells promises clinical utility in cell-based immunotherapies.


Subject(s)
Microfluidics , T-Lymphocytes , Biological Assay , Cell Separation , Electronics , Electrophoresis , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...