Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 6(11): 1687-1699, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36216903

ABSTRACT

Data suggest that the malaria vector mosquito Anopheles coluzzii persists during the dry season in the Sahel through a dormancy mechanism known as aestivation; however, the contribution of aestivation compared with alternative strategies such as migration is unknown. Here we marked larval Anopheles mosquitoes in two Sahelian villages in Mali using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. After an initial enrichment period, 33% of An. coluzzii mosquitoes were strongly marked. Seven months following enrichment, multiple analysis methods supported the ongoing presence of marked mosquitoes, compatible with the prediction that the fraction of marked mosquitoes should remain stable throughout the dry season if local aestivation is occurring. The results suggest that aestivation is a major persistence mechanism of An. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains. This persistence strategy could influence mosquito control and malaria elimination campaigns.


Subject(s)
Anopheles , Malaria , Animals , Estivation , Seasons , Mosquito Vectors
2.
Methods Ecol Evol ; 12(6): 1008-1016, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34249305

ABSTRACT

Current mark-release-recapture methodologies are limited in their ability to address complex problems in vector biology, such as studying multiple groups overlapping in space and time. Additionally, limited mark retention, reduced post-marking survival and the large effort in marking, collection and recapture all complicate effective insect tracking.We have developed and evaluated a marking method using a fluorescent dye (SmartWater®) combined with synthetic DNA tags to informatively and efficiently mark adult mosquitoes using an airbrush pump and nebulizer. Using a handheld UV flashlight, the fluorescent marking enabled quick and simple initial detection of recaptures in a field-ready and non-destructive approach that when combined with an extraction-free PCR on individual mosquito legs provides potentially unlimited marking information.This marking, first tested in the laboratory with Anopheles gambiae s.l. mosquitoes, did not affect survival (median ages 24-28 days, p-adj > 0.25), oviposition (median eggs/female of 28.8, 32.5, 33.3 for water, green, red dyes, respectively, p-adj > 0.44) or Plasmodium competence (mean oocysts 5.56-10.6, p-adj > 0.95). DNA and fluorescence had 100% retention up to 3 weeks (longest time point tested) with high intensity, indicating marks would persist longer.We describe a novel, simple, no/low-impact and long-lasting marking method that allows separation of multiple insect subpopulations by combining unlimited length and sequence variation in the synthetic DNA tags. This method can be readily deployed in the field for marking multiple groups of mosquitoes or other insects.

SELECTION OF CITATIONS
SEARCH DETAIL
...