Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Fish Biol ; 104(4): 912-919, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38226503

ABSTRACT

The microbial communities of fish are considered an integral part of maintaining the overall health and fitness of their host. Research has shown that resident microbes reside on various mucosal surfaces, such as the gills, skin, and gastrointestinal tract, and play a key role in various host functions, including digestion, immunity, and disease resistance. A second, more transient group of microbes reside in the digesta, or feces, and are primarily influenced by environmental factors such as the host diet. The vast majority of fish microbiome research currently uses lethal sampling to analyse any one of these mucosal and/or digesta microbial communities. The present paper discusses the various opportunities that non-lethal microbiome sampling offers, as well as some inherent challenges, with the ultimate goal of creating a sound argument for future researchers to transition to non-lethal sampling of wild fish in microbiome research. Doing so will reduce animal welfare and population impacts on fish while creating novel opportunities to link host microbial communities to an individual's behavior and survival across space and time (e.g., life-stages, seasons). Current lethal sampling efforts constrain our ability to understand the mechanistic ecological consequences of variation in microbiome communities in the wild. Transitioning to non-lethal sampling will open new frontiers in ecological and microbial research.


Subject(s)
Bacteria , Microbiota , Animals , Fishes , Gastrointestinal Tract , Feces
2.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-37942568

ABSTRACT

Eutrophication can impact bacteria by altering fluxes and processing of nutrients and organic matter. However, relatively little is known of how bacterial communities, diversity, and interactions with phytoplankton might respond to nutrient management. We used 16S rRNA amplicon sequencing to compare bacterial assemblages in the water column upstream (control) and downstream (impact) of a wastewater treatment plant (WWTP) located on a eutrophic prairie stream. Sampling occurred before (2012) and after (2018) the 2016 biological nutrient removal (BNR) upgrade that removed >90% of nitrogen (N, mainly NH4+). Multivariate ordination suggested that effluent-impacted bacterial communities were associated mainly with elevated NH4+ concentrations before the upgrade, whereas those after BNR were characteristic of reference systems (low NO3-, diverse regulation). Genera such as Betaproteobacteria and Rhodocyclacea were abundant at impacted sites in 2012, whereas Flavobacterium and a potential pathogen (Legionella) were common at impacted sites in 2018. Nitrifier bacteria (Nitrospira and Nitrosomonas) were present but rare at all sites in 2012, but recorded only downstream of the WWTP in 2018. Generalized additive models showed that BNR reduced bacterial diversity, with ∼70% of the deviance in diversity explained by hydrology, pH, nutrients, and phytoplankton abundance. Overall, NH4+ removal reduced symptoms of cultural eutrophication in microbe assemblages.


Subject(s)
Wastewater , Water Purification , Nitrogen/analysis , RNA, Ribosomal, 16S/genetics , Denitrification , Grassland , Bacteria/genetics , Phytoplankton
3.
Microbiol Resour Announc ; 12(9): e0035623, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37606385

ABSTRACT

We report the complete genome sequences of four bacterial strains that were isolated from Blattella germanica (German cockroaches) that were found in three wards of the Rajshahi Medical College Hospital. Multiple antibiotic resistance genes were identified in each genome, with one genome containing multiple plasmid-encoded resistance genes.

4.
Microb Genom ; 8(9)2022 09.
Article in English | MEDLINE | ID: mdl-36107145

ABSTRACT

Delftia is a diverse betaproteobacterial genus with many strains having agricultural and industrial relevance, including plant-growth promotion, bioremediation of hydrocarbon-contaminated soils, and heavy metal immobilization. Delftia spp. are broadly distributed in the environment, and have been isolated from plant hosts as well as healthy and diseased animal hosts, yet the genetic basis of this ecological versatility has not been characterized. Here, we present a phylogenomic comparison of published Delftia genomes and show that the genus is divided into two well-supported clades: one 'Delftia acidovorans' clade with isolates from soils and plant rhizospheres, and a second 'Delftia lacustris and Delftia tsuruhatensis' clade with isolates from humans and sludge. The pan-genome inferred from 61 Delftia genomes contained over 28 000 genes, of which only 884 were found in all genomes. Analysis of industrially relevant functions highlighted the ecological versatility of Delftia and supported their role as generalists.


Subject(s)
Delftia , Metals, Heavy , Animals , DNA, Bacterial/genetics , Delftia/genetics , Humans , Phylogeny , Sequence Analysis, DNA , Sewage , Soil
5.
Can J Microbiol ; 68(5): 377-382, 2022 May.
Article in English | MEDLINE | ID: mdl-35235420

ABSTRACT

To address real and perceived emerging risks originating from the ever-accelerating breakthroughs in life science research, the Dual Use Research of Concern (DURC) Panel Discussion, organized by Synbio Canada and the Alberta RNA Research and Training Institute (ARRTI), took place on June 23rd, 2021. It brought together six stakeholders from different levels of academic research, administration, governance, and science publishing to explore the current and future challenges in addressing DURC. Technological advancements within the life sciences, especially within the field of omics technology, make it difficult to apply a simple checklist for dual-use assessment and require continuous and integrated effort. Bottom-up approaches from within the scientific community are suggested by all stakeholders to enable efficient governance and address the true risks resulting from DURC, not just the alleged risks. To address such alleged risks, open and broadscale communication of DURC and its oversight policies may be required. At the same time, any form of open communication also contains the risk of information hazards, defined as potentially creating public fear or informing malicious actors. Here, an overview of the DURC panel and its outcomes is provided.


Subject(s)
Biomedical Research , Dual Use Research , Alberta
6.
Nucleic Acids Res ; 50(2): 975-988, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34904658

ABSTRACT

Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state termed R7A* maintained these phenotypes in laboratory culture but did not transfer the R7A* state to recipients of ICEMlSymR7A following conjugation. We previously demonstrated ICEMlSymR7A transfer and QS are repressed by the antiactivator QseM in R7A populations and that the adjacently-coded DNA-binding protein QseC represses qseM transcription. Here RNA-sequencing revealed qseM expression was repressed in R7A* cells and that RNA antisense to qseC was abundant in R7A but not R7A*. Deletion of the antisense-qseC promoter converted cells into an R7A*-like state. An adjacently coded QseC2 protein bound two operator sites and repressed antisense-qseC transcription. Plasmid overexpression of QseC2 stimulated the R7A* state, which persisted following curing of this plasmid. The epigenetic maintenance of the R7A* state required ICEMlSymR7A-encoded copies of both qseC and qseC2. Therefore, QseC and QseC2, together with their DNA-binding sites and overlapping promoters, form a stable epigenetic switch that establishes binary control over qseM transcription and primes a subpopulation of R7A cells for QS and horizontal transfer.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Mesorhizobium , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conjugation, Genetic , Genomic Islands , Mesorhizobium/genetics , Mesorhizobium/metabolism , Quorum Sensing , Symbiosis/genetics
7.
Environ Microbiol Rep ; 13(5): 720-727, 2021 10.
Article in English | MEDLINE | ID: mdl-34236147

ABSTRACT

Biobeds are agriculture-based bioremediation tools used to safely contain and microbially degrade on-farm pesticide waste and rinsate, thereby reducing the negative environmental impacts associated with pesticide use. While these engineered ecosystems demonstrate efficient pesticide removal, the microbiomes in these environments remain largely understudied both taxonomically and functionally. This study used metagenomic and metatranscriptomic techniques to characterize the microbial community in a two-cell Canadian biobed system before and after a field season of pesticide application. These culture-independent approaches identified an enrichment of xenobiotic-degrading bacteria, such as Afipia, Sphingopyxis and Pseudomonas, and enrichment and transcription of xenobiotic-degrading genes, such as peroxidases, oxygenases, and hydroxylases, among others; we were able to directly link the transcription of these genes to Pseudomonas, Oligotropha, Mesorhizobium, Rhodopseudomonas, and Stenotrophomonas taxa.


Subject(s)
Ecosystem , Xenobiotics , Bacteria/genetics , Bacteria/metabolism , Canada , Grassland , Xenobiotics/metabolism
8.
Can J Microbiol ; 67(10): 737-748, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34077692

ABSTRACT

Wastewater treatment plants (WWTPs) are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes (ARGs). Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening for antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209 357 bp), harbouring resistance genes to ß-lactam (blaCMY-42, blaTEM-1ß, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172 280 bp) carrying similar ß-lactamase and a small multi-drug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24 552 bp cluster in pFEMG - interspersed with transposons, insertion sequence elements, and a class 1 integron - may be of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponded to observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade-offs of plasmids with different types of conjugative transfer and maintenance modules.


Subject(s)
Plasmids , Water Purification , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Canada , Genomics , Plasmids/genetics , Plasmids/isolation & purification , beta-Lactamases/genetics
9.
Microbiol Resour Announc ; 10(18)2021 May 06.
Article in English | MEDLINE | ID: mdl-33958418

ABSTRACT

Aphanomyces euteiches is a soilborne plant pathogen. It causes severe root rot in leguminous crop species. We report the complete genome sequence of a biocontrol strain, Pseudomonas simiae K-Hf-L9. The strain inhibited Aphanomyces euteiches mycelia and zoospores and suppressed root rot in field peas grown under controlled growth chamber conditions.

10.
Sci Total Environ ; 767: 145481, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33636762

ABSTRACT

Residuals of antimicrobial products from anthropogenic uses can create a selective environment in domestic wastewater treatment systems and receiving environments and contribute to the spread of antimicrobial resistance (AMR). On-site wastewater treatment systems are widely used for domestic wastewater management in rural and remote regions, but the fate of determinants of AMR in these types of environments has received little attention. In this study, the mechanisms responsible for the attenuation of determinants of AMR in lateral flow sand filters were explored using a combination of lab, field and modeling investigations. The degradation kinetics and adsorption potential in the sand filter medium of three antibiotic resistance genes (ARGs; sul1, tetO, and ermB) and culturable bacteria resistant to sulfamethoxazole, tetracycline, and erythromycin were measured using lab experiments. The spatial distribution of ARGs and antibiotic resistant bacteria were also assessed in field scale sand filters, and mechanistic modeling was conducted to characterize filtration processes. The results indicated that the primary mechanisms responsible for AMR attenuation within the sand filters were degradation and filtration. The spatial distribution of AMR determinants illustrated that attenuation was occurring along the entire length of each filter. This study provides new insights on primary mechanisms of AMR attenuation in on-site wastewater treatment systems and supports the use of conservative design guidelines and separation distances for reducing AMR transmission.


Subject(s)
Anti-Bacterial Agents , Wastewater , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Genes, Bacterial , Sand
11.
Can J Microbiol ; 67(2): 147-160, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32905709

ABSTRACT

Mesorhizobium phage vB_MloS_Cp1R7A-A1 was isolated from soil planted with chickpea in Saskatchewan. It is dissimilar in sequence and morphology to previously described rhizobiophages. It is a B3 morphotype virus with a distinct prolate capsid and belongs to the tailed phage family Siphoviridae. Its genome has a GC content of 60.3% and 238 predicted genes. Putative functions were predicted for 57 genes, which include 27 tRNA genes with anticodons corresponding to 18 amino acids. This represents the highest number of tRNA genes reported yet in a rhizobiophage. The gene arrangement shows a partially modular organization. Most of the structural genes are found in one module, whereas tRNA genes are in another. Genes for replication, recombination, and nucleotide metabolism form the third module. The arrangement of the replication module resembles the replication module of Enterobacteria phage T5, raising the possibility that it uses a recombination-based replication mechanism, but there is also a suggestion that a T7-like replication mechanism could be used. Phage termini appear to be long direct repeats of just over 12 kb in length. Phylogenetic analysis revealed that Cp1R7A-A1 is more closely related to PhiCbK-like Caulobacter phages and other B3 morphotype phages than to other rhizobiophages sequenced thus far.


Subject(s)
Bacteriophages/isolation & purification , Capsid/ultrastructure , Mesorhizobium/virology , Phosmet , Siphoviridae/isolation & purification , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/ultrastructure , Caulobacter crescentus/virology , Genes, Viral/genetics , Genome, Viral/genetics , Phylogeny , Siphoviridae/classification , Siphoviridae/genetics , Siphoviridae/ultrastructure , Species Specificity
12.
Front Mol Biosci ; 8: 777042, 2021.
Article in English | MEDLINE | ID: mdl-35187066

ABSTRACT

The increasing incidence and prevalence of the pathogen Aphanomyces euteiches in various pulse-growing regions worldwide necessitates the development of effective management strategies, including biological control agents. Numerous labs have undertaken research examining biological control methods to evaluate aphanomyces root rot suppression in multistep processes that include isolation of inhibitory organisms, lab assays, growth chamber assays, and field trials. Given the emergence of various biocontrol agents and the need to mitigate aphanomyces yield losses, we have undertaken a meta-analysis approach to analyze the effectiveness of biocontrol agents in relation to application method, biocontrol agent richness, biocontrol agent type, the type of study, and reporting system-oriented moderator variables. An effect size, calculated as a natural log response ratio, resulted in a summary weighted mean of -0.411, suggesting the overall effectiveness of biocontrol agents (p < .001). Aphanomyces root rot suppression using biological treatments showed significant heterogeneity for all moderator variables, confirming that the studies do not share a common effect size and the use of a random effect model was appropriate. Across studies, meta-analyses revealed that soil amendments, biocontrol agent application as a seed coating and suspension, bacterial and fungal biocontrol agents, mixed applications, growth chamber and field studies, and qualitative and quantitative reporting systems were all associated with significantly positive outcomes for aphanomyces root rot suppression. Our findings suggest that there is potential promise for biological control of aphanomyces root rot, and more field trials need to be conducted to demonstrate the efficacy level observed under growth chamber conditions. Moreover, we identified a lack of detailed understanding of the mechanism(s) of biological control of aphanomyces root rot as a research priority.

13.
Chemosphere ; 263: 128177, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297145

ABSTRACT

Prevalence of antibiotic resistance in the environment is of critical concern from a public health perspective, with many human impacted environments showing increased incidence of antibiotic resistant bacteria. Wastewater treatment environments are of particular interest due to their high levels of antibiotic residuals, which can select for antibiotic resistance genes in bacteria. However, wastewater treatment plants are generally not designed to remove antibiotics from collected waste, and many of the currently proposed methods are unsafe for environmental use. This has prompted researchers to identify alternative environmentally safe methods for removing antibiotics from wastewater to be used in parallel with conventional wastewater treatment, as it is a potential strategy towards the mitigation of environmental antibiotic resistance selection. This paper reviews several methods developed to absorb and/or degrade antibiotics from aqueous solutions and wastewater biosolids, which includes ligninolytic fungi and ligninolytic enzymes, algae-driven photobioreactors and algae-activated sludge, and organically-sourced biochars.


Subject(s)
Anti-Bacterial Agents , Water Purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Humans , Waste Disposal, Fluid , Wastewater
14.
Microb Genom ; 6(11)2020 11.
Article in English | MEDLINE | ID: mdl-33151138

ABSTRACT

The plant growth-promoting rhizobacterium Delftia acidovorans RAY209 is capable of establishing strong root attachment during early plant development at 7 days post-inoculation. The transcriptional response of RAY209 was measured using RNA-seq during early (day 2) and sustained (day 7) root colonization of canola plants, capturing RAY209 differentiation from a medium-suspended cell state to a strongly root-attached cell state. Transcriptomic data was collected in an identical manner during RAY209 interaction with soybean roots to explore the putative root colonization response to this globally relevant crop. Analysis indicated there is an increased number of significantly differentially expressed genes between medium-suspended and root-attached cells during early soybean root colonization relative to sustained colonization, while the opposite temporal pattern was observed for canola root colonization. Regardless of the plant host, root-attached RAY209 cells exhibited the least amount of differential gene expression between early and sustained root colonization. Root-attached cells of either canola or soybean roots expressed high levels of a fasciclin gene homolog encoding an adhesion protein, as well as genes encoding hydrolases, multiple biosynthetic processes, and membrane transport. Notably, while RAY209 ABC transporter genes of similar function were transcribed during attachment to either canola or soybean roots, several transporter genes were uniquely differentially expressed during colonization of the respective plant hosts. In turn, both canola and soybean plants expressed genes encoding pectin lyase and hydrolases - enzymes with purported function in remodelling extracellular matrices in response to RAY209 colonization. RAY209 exhibited both a core regulatory response and a planthost-specific regulatory response to root colonization, indicating that RAY209 specifically adjusts its cellular activities to adapt to the canola and soybean root environments. This transcriptomic data defines the basic RAY209 response as both a canola and soybean commercial crop and seed inoculant.


Subject(s)
Adaptation, Physiological/genetics , Brassica napus/microbiology , Delftia acidovorans/genetics , Glycine max/microbiology , Plant Roots/microbiology , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Brassica napus/growth & development , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Delftia acidovorans/metabolism , Gene Expression Regulation, Bacterial/genetics , Plant Development , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Glycine max/growth & development
15.
Microbiol Resour Announc ; 9(11)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32165392

ABSTRACT

Phages vB_RleM_RL38JI and vB_RleM_RL2RES are known to mediate generalized transduction in Rhizobium leguminosarum The RL38JI genome consists of 158,577 nucleotides and 270 predicted genes, whereas RL2RES has a 156,878-bp genome with 262 predicted genes. The two genomes are similar, with 82.88% nucleotide identity to each other.

16.
Phage (New Rochelle) ; 1(1): 45-56, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-36147614

ABSTRACT

Background: Pantoea is a genus within the Enterobacterales whose members encompass free-living and host-associated lifestyles. Despite our growing understanding of the role of mobile genetic elements in the biology, ecology, and evolution of this bacterial group, few Pantoea bacteriophages have been identified and characterized. Materials and Methods: A bacteriophage that could infect Pantoea agglomerans was isolated from barnyard soil. We used electron microscopy and complete genome sequencing to identify the viral family, and evaluated its host range across 10 different Pantoea species groups using both bacterial lawn and phage lawn assays. The latter assays were carried out using a scalable microplate assay to increase throughput and enable spectrophotometric quantitation. We also performed a phylogenetic analysis to determine the closest relatives of our phage. Results: Phage vB_PagP-SK1 belongs to the genus Teseptimavirus of the Podoviridae family in the order Caudovirales. The 39,938 bp genome has a modular structure with early, middle, and late genes, along with the characteristic direct terminal repeats of 172 bp. Genome composition and synteny were similar to that of the Erwinia amylovora phage, vB_EamP-L1, with the exception of a few loci that are most similar to genes of phage infecting other members of the Enterobacteriaceae. A total of 94 Pantoea strains were surveyed and vB_PagP-SK1 was found to infect 15 Pantoea strains across three species, predominantly P. agglomerans, along with one Erwinia billingiae strain. Conclusions: vB_PagP-SK1 belongs to the Teseptimavirus genus and has a host range that spans multiple species groups, and is most closely related to the E. amylovora phage, vB_EamP-L1. The presence of xenologous genes in its genome indicates that the genome is a mosaic of multiple Teseptimavirus phages that infect members of the Enterobacteriaceae.

17.
Water Res ; 162: 482-491, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31306951

ABSTRACT

The ability of lateral flow sand filters, used as on-site wastewater treatment systems (OWTS), to remove antibiotic resistance genes (ARGs), antibiotic resistant bacteria (ARB), and other relevant genetic markers (HF183, 16S rRNA, and int1) was assessed. Municipal wastewater was settled in a septic tank prior to loading into six pilot-scale lateral flow sand filters comprised of three different sand media types, at 5 and 30% slopes. The sand filters were sampled bi-weekly for: 9 ARGs and 3 other complimentary gene markers (sul1, sul2, qnrS, tetO, ermB, blaTEM, blaCTX-M, mecA, vanA, int1, HF183, 16S rRNA), and conventional microbial and water quality indicators, from July to November in 2017, and four times in the summer of 2018. The sand filters were observed to attenuate 7 of the ARGs to mostly below 2 log gene copies per mL. Log reductions ranging from 2.9 to 5.4 log were observed for the removal of absolute abundances of ARGs from septic tank effluent in 5 of the 6 sand filters. The fine-grained filter on the 5% slope did not perform as well for ARG attenuation due to hydraulic failure. The apportionment of cell-associated versus cell-free DNA was determined for the gene markers and this indicated that the genes were primarily carried intracellularly. Average log reductions of ARB with resistance to either sulfamethoxazole, erythromycin, or tetracycline were approximately 2.3 log CFU per mL within the filters compared to the septic tank effluent. This field study provides in-depth insights into the attenuation of ARB, ARGs, and their genetic compartmentalization in variably saturated sand OWTS. Overall, this type of OWTS was found to pose little risk of antimicrobial resistance contamination spread into surrounding environments when proper hydraulic function was maintained.


Subject(s)
Anti-Bacterial Agents , Wastewater , Drug Resistance, Microbial , Genes, Bacterial , RNA, Ribosomal, 16S , Waste Disposal, Fluid
18.
Microb Biotechnol ; 12(6): 1199-1209, 2019 11.
Article in English | MEDLINE | ID: mdl-30927344

ABSTRACT

Cultivation of dedicated soil plots called 'landfarms' is an effective technology for bioremediation of hydrocarbon waste generated by various industrial practices. To understand the influence of soil conditions on landfarm microbial communities, analysis of bacterial and fungal community structure using next-generation sequencing at different sections and depths was performed across a hydrocarbon-waste landfarm in Regina, Saskatchewan, Canada. While a core set of hydrocarbon-associated bacterial and fungal taxa are present throughout the landfarm, unique bacterial and fungal operational taxonomic units are differentially abundant at sections within the landfarm, which correlate with differences in soil physiochemical properties and management practices. Increased frequency of waste application resulted in strong positive correlations between bacterial community assemblages and elevated amounts of oil, grease and F3 - F4 hydrocarbon fractions. In areas of standing water and lower application of hydrocarbon, microbial community structure correlated with soil pH, trace nutrients and metals. Overall, diversity and structure of bacterial communities remain relatively stable across the landfarm, while in contrast, fungal community structure appears more responsive to soil oxygen conditions. Results are consistent with the hypothesis that years of bioremediation activity have shaped microbial communities; however, several management practices can be undertaken to increase efficiency of remediation, including the removal of standing water and soil tilling across the landfarm.


Subject(s)
Bacteria/classification , Biodegradation, Environmental , Fungi/classification , Hydrocarbons/metabolism , Microbiota , Soil Microbiology , Soil Pollutants/metabolism , Bacteria/genetics , Bacteria/metabolism , Biotransformation , Fungi/genetics , Fungi/metabolism , High-Throughput Nucleotide Sequencing , Metagenomics , Saskatchewan , Soil/chemistry , Spatial Analysis
19.
Sci Total Environ ; 642: 1415-1428, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30045522

ABSTRACT

In the Canadian Arctic, it is common practice to discharge municipal wastewater into tundra wetlands. Antibiotic resistant bacteria and the antibiotic resistance genes (ARGs) they contain can be present in municipal wastewater and there is a scarcity of knowledge on ARGs in wastewater in Arctic environments. This study was initiated on the fate of ARGs in tundra wetland ecosystems impacted by anthropogenic wastewater sources in Arctic communities. In the summer season of 2016, two wetlands were studied in the Inuit communities of Sanikiluaq and Naujaat in Nunavut, Canada. Genomic DNA was extracted from both soil and water during the spring freshet and late summer in the wetlands, and a suite of nine clinically relevant ARGs (sul1, sul2, mecA, vanA, qnrS, ermB, tetO, blaTEM, blaCTX-M), and an integron gene (int1) were analyzed using quantitative polymerase chain reaction (qPCR). Hydrological and water quality measurements were conducted in conjunction with the microbiological sampling. Gene targets were consistently present in the wastewater, and throughout both wetlands, except for vanA and mecA. Concentrations of ARGs were greater during the spring freshet, due to short hydraulic retention times (<2 days), which coincided with decreased treatment performance. The environmental resistome in un-impacted wetlands had above detection limit concentrations of int1, sul1, sul2, blaCTX-M in water in Naujaat, and sul1, qnrS and tetO in soil in Sanikiluaq. First-order rate constants were widely variable and specific to the gene target. ARGs were present in concentrations elevated above baseline reference sites in tundra wetlands influenced by municipal wastewater, and hydrological conditions had a large impact on their spatial distribution and levels.


Subject(s)
Drug Resistance, Microbial/genetics , Environmental Monitoring , Tundra , Wastewater/microbiology , Wetlands , Anti-Bacterial Agents , Canada , Genes, Bacterial , Nunavut , Waste Disposal, Fluid
20.
Sci Total Environ ; 643: 292-300, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29940441

ABSTRACT

Raw wastewater can contain high levels of antibiotic resistance genes (ARGs), making municipal wastewater treatment plants (WWTPs) critical for the control of the release of ARGs into the environment. The objective of this study was to investigate how individual treatment steps in two tertiary WWTPs affected the removal (copies/mL) and relative abundance of ARGs (copies/copies 16S rRNA genes). Nine ARG markers, representing resistance to commonly used antibiotics, as well as one integron gene (intl1) to assess ARG mobility potential, were quantified using quantitative real-time PCR (qPCR). Both WWTPs met provincial effluent regulations for removal of carbonaceous oxygen demand (CBOD5) and total suspended solids. Eight of the ten ARG markers (intl1, sul1, sul2, tet(O), ermB, blaCTX-M, blaTEM, qnrS) were detected in all samples. In contrast, mecA was detected intermittently and vanA remained below the detection limit in all samples. The total ARG marker abundances decreased by log 1.77 (p < 0.05) in the plant using an aerated lagoon (AL), and by 2.69 logs (p < 0.05) through treatment in the plant employing a biological nutrient removal (BNR) system. The BNR and secondary clarifier steps in both plants afforded the most removal of ARGs. The relative abundance of ARGs remained unchanged at the AL plant and showed a decreasing trend at the BNR plant. Levels of CBOD5, nitrate and the human Bacteroides fecal marker correlated with ARG concentrations, suggesting these variables may be useful in predicting ARG removal. In conclusion, the effluent coming from the WWTPs contained eight of the studied ARG markers in concentrations ranging from 0.01 to 3.6 log copies/mL, indicating their release into the environment, however, the relative abundance of ARGs was not enriched during treatment in the two WWTPs.


Subject(s)
Drug Resistance, Microbial/genetics , Genes, Bacterial , Waste Disposal, Fluid/methods , Wastewater/microbiology , Anti-Bacterial Agents , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...