Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 1061216, 2022.
Article in English | MEDLINE | ID: mdl-36531939

ABSTRACT

The expression profiles of exosomal microRNAs (miRNAs) are regulated by the microenvironment, and appropriate priming with mesenchymal stem cells (MSCs) is one of the strategies to enhance the paracrine potency of MSCs. Our previous work demonstrated that exosomes from tumor necrosis factor (TNF)-α-primed human gingiva-derived MSCs (GMSCs) could be a therapeutic tool against periodontitis, and that TNFα-inducible exosomal miR-1260b is essential for the inhibition of alveolar bone loss. However, the precise molecular mechanism underlying miR-1260b-mediated inhibition of osteoclastogenesis is not yet fully understood. Here, we found that the activating transcription factor (ATF)-6ß, a novel miR-1260b-targeting gene, is critical for the regulation of osteoclastogenesis under endoplasmic reticulum (ER) stress. An experimental periodontal mouse model demonstrated that induction of ER stress was accompanied by enhanced ATF6ß expression, and local administration of miR-1260b and ATF6ß siRNA using polyethylenimine nanoparticles (PEI-NPs) significantly suppressed the periodontal bone resorption. In periodontal ligament (PDL) cells, the ER stress inducer, tunicamycin, enhanced the expression of the receptor activator of NF-κB ligand (RANKL), while miR-1260b-mediated downregulation of ATF6ß caused RANKL inhibition. Furthermore, the secretome from miR-1260b/ATF6ß-axis-activated PDL cells inhibited osteoclastogenesis in human CD14+ peripheral blood-derived monocytes. These results indicate that the miR-1260b/ATF6ß axis mediates the regulation of ER stress, which may be used as a novel therapeutic strategy to treat periodontal disease.

2.
Sci Rep ; 12(1): 13344, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922474

ABSTRACT

Immunoregulatory properties of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising. Gingival tissue-derived MSCs (GMSCs) have unique immunoregulatory capacity and secrete large amounts of EVs. Recent findings suggest that priming MSCs with inflammatory stimuli is an effective strategy for cell-free therapy. However, the precise mechanism by which the contents of EVs are customized has not been fully elucidated. Here, we show that EVs derived from GMSCs primed with a combination of two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-α (IFN-α), synergistically promote anti-inflammatory M2 macrophage polarization by increasing the expression of cluster of differentiation 73 (CD73) and CD5 molecule-like (CD5L). Expression of CD73 by TNF-α/IFN-α stimulation was transcriptionally upregulated by the activation of mammalian target of rapamycin signaling and nuclear translocation of hypoxia-inducible factor 1α in GMSCs. TNF-α/IFN-α treatment also significantly increased the expression of CD5L mRNA via the transcription factor DNA-binding protein inhibitor ID3 and liver X receptor. Interestingly, exosomal CD5L is a prerequisite for the synergistic effect of EVs-mediated M2 macrophage polarization. These results indicate that combined pre-licensing with TNF-α and IFN-α in GMSCs is ideal for enhancing the anti-inflammatory function of EVs, which contributes to the establishment of a therapeutic tool.


Subject(s)
Extracellular Vesicles , Tumor Necrosis Factor-alpha , Extracellular Vesicles/metabolism , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Macrophage Activation , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
J Cell Biochem ; 122(7): 716-730, 2021 07.
Article in English | MEDLINE | ID: mdl-33529434

ABSTRACT

Amelogenin directly binds to glucose-regulated protein 78 (Grp78). Cell migration activity is expected to increase when human periodontal ligament cells (hPDLCs) overexpressing Grp78 are treated with amelogenin. Geranylgeranylacetone (GGA) is a drug that induces the expression of heat shock protein and is routinely used to treat gastric ulcers. Here, we investigated the changes in the properties and behavior of hPDLCs in response to treatment with GGA and the synergistic effects of amelogenin stimulation in hPDLCs pretreated with GGA for the establishment of a novel periodontal tissue regenerative therapy. We observed that GGA treatment increased Grp78 protein expression in hPDLCs and enhanced cell migration. Microarray analysis demonstrated that increased Grp78 expression triggered the production of angiopoietin-like 4 and amphiregulin, which are involved in the enhancement of angiogenesis and subsequent wound healing via the activation of hypoxia-inducible factor 1α and peroxisome proliferator-activated receptors as well as the phosphorylation of cAMP response element-binding protein and protein kinase A. Moreover, the addition of recombinant murine amelogenin (rM180) further accelerated hPDLC migration and tube formation of human umbilical vein endothelial cells due to the upregulation of interleukin-8 (IL-8), monocyte chemotactic protein 1, and IL-6, which are also known as angiogenesis-inducing factors. These findings suggest that the application of GGA to gingival tissue and alveolar bone damaged by periodontal disease would facilitate the wound healing process by inducing periodontal ligament cells to migrate to the root surface and release cytokines involved in tissue repair. Additionally, supplementation with amelogenin synergistically enhanced the migratory capacity of these cells while actively promoting angiogenesis. Therefore, the combined application of GGA and amelogenin may establish a suitable environment for periodontal wound healing and further drive the development of novel therapeutics for periodontal tissue regeneration.


Subject(s)
Amelogenin/pharmacology , Diterpenes/pharmacology , Neovascularization, Pathologic , Periodontal Ligament/blood supply , Wound Healing , Anti-Ulcer Agents/pharmacology , Drug Therapy, Combination , Endoplasmic Reticulum Chaperone BiP , Humans , Periodontal Ligament/metabolism , Periodontal Ligament/pathology
4.
Acta Biomater ; 122: 306-324, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33359765

ABSTRACT

Mesenchymal stem cell (MSC)-derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.


Subject(s)
Alveolar Bone Loss , Exosomes , Animals , Gingiva , Humans , Macrophages , Mice , Osteoclasts , Tumor Necrosis Factor-alpha
5.
Front Immunol ; 11: 709, 2020.
Article in English | MEDLINE | ID: mdl-32373130

ABSTRACT

Enamel matrix derivatives (EMDs)-based periodontal tissue regenerative therapy is known to promote healing with minimal inflammatory response after periodontal surgery, i. e., it promotes wound healing with reduced pain and swelling. It has also been reported that macrophages stimulated with amelogenin, a major component of EMD, produce various anti-inflammatory cytokines and growth factors. We previously found that stimulation of monocytes with murine recombinant M180 (rM180) amelogenin suppresses major histocompatibility complex class II (MHC II) gene expression using microarray analysis. However, the detailed molecular mechanisms for this process remain unclear. In the present study, we demonstrated that rM180 amelogenin selectively downmodulates the interferon gamma (IFNγ)-induced cell surface expression of MHC II molecules in macrophages and this mechanism mediated by rM180 appeared to be widely conserved across species. Furthermore, rM180 accumulated in the nucleus of macrophages at 15 min after stimulation and inhibited the protein expression of class II transactivator (CIITA) which controls the transcription of MHC II by IFNγ. In addition, reduced MHC II expression on macrophages pretreated with rM180 impaired the expression of T cell activation markers CD25 and CD69, T cell proliferation ability, and IL-2 production by allogenic CD4+ T lymphocytes in mixed lymphocyte reaction assay. The chromatin immunoprecipitation assay showed that IFNγ stimulation increased the acetylation of histone H3 lysine 27, which is important for conversion to euchromatin, as well as the trimethylation of histone H3 lysine 4 levels in the CIITA promoter IV (p-IV) region, but both were suppressed in the group stimulated with IFNγ after rM180 treatment. In conclusion, the present study shows that amelogenin suppresses MHC II expression by altering chromatin structure and inhibiting CIITA p-IV transcription activity, and attenuates subsequent T cell activation. Clinically observed acceleration of wound healing after periodontal surgery by amelogenin may be partially mediated by the mechanism elucidated in this study. In addition, the use of recombinant amelogenin is safe because it is biologically derived protein. Therefore, amelogenin may also be used in future as an immunosuppressant with minimal side effects for organ transplantation or MHC II-linked autoimmune diseases such as type I diabetes, multiple sclerosis, and rheumatoid arthritis, among others.


Subject(s)
Amelogenin/pharmacology , Down-Regulation/drug effects , Euchromatin/metabolism , Histocompatibility Antigens Class II/metabolism , Interferon-gamma/metabolism , Macrophages/immunology , Nuclear Proteins/genetics , Promoter Regions, Genetic/drug effects , Trans-Activators/genetics , Amelogenin/genetics , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RAW 264.7 Cells , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , THP-1 Cells
6.
Arch Oral Biol ; 83: 241-251, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28822800

ABSTRACT

OBJECTIVES: Amelogenin, the major component of the enamel matrix derivative (EMD), has been suggested as a bioactive candidate for periodontal regeneration. Apart from producing a regenerative effect on periodontal tissues, amelogenin has also been reported to have an anti-inflammatory effect. However, the precise molecular mechanisms underlying these effects remain unclear. In the present study, we examined the immunomodulatory effects of amelogenin on macrophages. DESIGN: Human phorbol 12-myristate 13-acetate (PMA)-differentiated U937 macrophages and CD14+ peripheral blood-derived monocytes (PBMC)-derived macrophages were stimulated with recombinant amelogenin (rM180). After performing a detailed microarray analysis, the effects of rM180 on macrophage phenotype and signal transduction pathways were evaluated by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, confocal microscopy and flow cytometry. RESULTS: The microarray analysis demonstrated that rM180 increased the expression of anti-inflammatory genes in lipopolysaccharide (LPS)-challenged macrophages after 24h, while it temporarily up-regulated inflammatory responses at 4h. rM180 significantly enhanced the expression of M2 macrophage markers (CD163 and CD206). rM180-induced M2 macrophage polarisation was associated with morphological changes as well as vascular endothelial growth factor (VEGF) production. rM180 enhanced prostaglandin E2 (PGE2) expression, and the activation of the cAMP/cAMP-responsive element binding (CREB) signaling pathway was involved in amelogenin-induced M2 macrophage polarisation. Blocking of PGE2 signaling by indomethacin specifically abrogated rM180 with or without LPS-induced M2 shift in PBMC-derived macrophages. CONCLUSION: Amelogenin could reprogram macrophages into the anti-inflammatory M2 phenotype. It could therefore contribute to the early resolution of inflammation in periodontal lesions and provide a suitable environment for remodeling-periodontal tissues.


Subject(s)
Amelogenin/pharmacology , Cyclic AMP-Dependent Protein Kinases/physiology , Dinoprostone/physiology , Macrophages/drug effects , Signal Transduction/physiology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Lipopolysaccharides , Microarray Analysis , Microscopy, Confocal , Phenotype , Polymerase Chain Reaction , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...