Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Discov ; 9(1): 3, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609558

ABSTRACT

SARS-CoV-2 Omicron subvariants have demonstrated extensive evasion from monoclonal antibodies (mAbs) developed for clinical use, which raises an urgent need to develop new broad-spectrum mAbs. Here, we report the isolation and analysis of two anti-RBD neutralizing antibodies BA7208 and BA7125 from mice engineered to produce human antibodies. While BA7125 showed broadly neutralizing activity against all variants except the Omicron sublineages, BA7208 was potently neutralizing against all tested SARS-CoV-2 variants (including Omicron BA.1-BA.5) except Mu. By combining BA7208 and BA7125 through the knobs-into-holes technology, we generated a biparatopic antibody BA7208/7125 that was able to neutralize all tested circulating SARS-CoV-2 variants. Cryo-electron microscopy structure of these broad-spectrum antibodies in complex with trimeric Delta and Omicron spike indicated that the contact residues are highly conserved and had minimal interactions with mutational residues in RBD of current variants. In addition, we showed that administration of BA7208/7125 via the intraperitoneal, intranasal, or aerosol inhalation route showed potent therapeutic efficacy against Omicron BA.1 and BA.2 in hACE2-transgenic and wild-type mice and, separately, effective prophylaxis. BA7208/7125 thus has the potential to be an effective candidate as an intervention against COVID-19.

2.
Eur J Pharmacol ; 940: 175478, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36563953

ABSTRACT

Acetylcholinesterase (AChE) inhibitor (AChEI) is well established as first-line agents for relieving the symptoms of Alzheimer's disease (AD). Injectable sustained-release formulation of AChEI may be suitable for treating AD patients. However, it needs to know whether continuous inhibition of AChE could deteriorate or attenuate myocardial damage if myocardial ischemia (MI) occurs. Huperzine A microspheres (HAM) are a sustained-release formulation releasing sustainably huperzine A (an AChEI) for more than 7 days after a single dose of HAM. This study aimed to investigate the myocardial damage in an isoprenaline (ISO)-induced MI mice model during HAM treatment. The heart injury was evaluated by assaying serum CK-MB, Tn-I and observing histopathological changes. The levels of proinflammatory cytokines in serum were detected. The level of p-P65 and the expression of proteins in the JAK2/STAT3 signaling pathway were assayed with Western blot. Administration with a single dose of HAM resulted in inhibiting the MI-induced increases of CK-MB and Tn-I, alleviating the damage of heart tissue, and decreasing the levels of TNF-α and IL-6. In addition, HAM decreased the levels of p-P65, p-JAK2, and p-STAT3 in heart tissue. The effects of HAM could be weakened or abolished by the specific α7nAChR antagonist. These findings suggest that continuous AChE inhibition could protect the heart from ischemic damage during administration of sustained-release formulation of AChEI, which is associated with the anti-inflammatory effect of HAM by regulating α7nAChR-dependent JAK2/STAT3 signaling pathway.


Subject(s)
Heart Injuries , Myocardial Ischemia , Mice , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Microspheres , Acetylcholinesterase/metabolism , Delayed-Action Preparations/pharmacology , Myocardial Ischemia/drug therapy , Signal Transduction , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...