Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Am J Pathol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762116

ABSTRACT

Duchenne muscular dystrophy (DMD), caused by loss-of-function mutations in the dystrophin gene, results in progressive muscle weakness and early fatality. Impaired autophagy is one of the cellular hallmarks of DMD, contributing to the disease progression. Molecular mechanisms underlying the inhibition of autophagy in DMD are not well understood. In the current study, the DMD mouse model mdx is used for the investigation of signaling pathways leading to suppression of autophagy. Mammalian target of rapamycin complex 1 (mTORC1) is found to be hyperactive in the DMD muscles, accompanying muscle weakness and autophagy impairment. Surprisingly, Akt, a well-known upstream regulator of mTORC1, is not responsible for mTORC1 activation or the dystrophic muscle phenotypes. Instead, leucyl-tRNA synthetase (LeuRS) is found to be overexpressed in mdx muscles compared with the wild type. LeuRS is known to activate mTORC1 in a noncanonical mechanism that involves interaction with RagD, an activator of mTORC1. Disrupting LeuRS interaction with RagD by the small-molecule inhibitor BC-LI-0186 reduces mTORC1 activity, restores autophagy, and ameliorates myofiber damage in the mdx muscles. Furthermore, inhibition of LeuRS by BC-LI-0186 improves dystrophic muscle strength in an autophagy-dependent manner. Taken together, our findings uncover a noncanonical function of the housekeeping protein LeuRS as a potential therapeutic target in the treatment of DMD.

2.
Physiol Rep ; 11(16): e15791, 2023 08.
Article in English | MEDLINE | ID: mdl-37620103

ABSTRACT

Skeletal muscle regeneration is an essential process to restore muscle function after injury and is influenced by various factors. Despite the known importance of sex hormones in muscle regeneration, whether and what sex difference exists in this process is still unclear. In this study, we provide evidence for a clear sex difference in muscle regeneration in mice. At 7 and 14 days after barium chloride-induced muscle injury, female mice showed a faster recovery of muscle fiber size than males. Consistently, muscle force in female mice was restored faster than in males after injury, and this functional difference was maintained at 14 months of age when regenerative capacity declined. Myosin heavy chain isoform profiling and fatigability test revealed dynamic remodeling of myosin heavy chain isoform expression including a type IIB to IIA/X MHC transition and reduced fatigability in regenerated muscles compared to uninjured muscles. A significant sex difference was detected in myosin heavy chain IIX content, although this did not lead to different fatigability. Together, our results suggest that sex is an important determinant of the recovery of regenerating skeletal muscle and is partially involved in the remodeling of myosin heavy chain isoforms during muscle regeneration.


Subject(s)
Myosin Heavy Chains , Sex Characteristics , Female , Male , Animals , Mice , Myosin Heavy Chains/genetics , Muscle, Skeletal , Muscle Fibers, Skeletal , Fatigue , Protein Isoforms/genetics
3.
J Cachexia Sarcopenia Muscle ; 14(4): 1880-1893, 2023 08.
Article in English | MEDLINE | ID: mdl-37311604

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, leads to progressive and fatal muscle weakness through yet-to-be-fully deciphered molecular perturbations. Emerging evidence implicates RhoA/Rho-associated protein kinase (ROCK) signalling in DMD pathology, yet its direct role in DMD muscle function, and related mechanisms, are unknown. METHODS: Three-dimensionally engineered dystrophin-deficient mdx skeletal muscles and mdx mice were used to test the role of ROCK in DMD muscle function in vitro and in situ, respectively. The role of ARHGEF3, one of the RhoA guanine nucleotide exchange factors (GEFs), in RhoA/ROCK signalling and DMD pathology was examined by generating Arhgef3 knockout mdx mice. The role of RhoA/ROCK signalling in mediating the function of ARHGEF3 was determined by evaluating the effects of wild-type or GEF-inactive ARHGEF3 overexpression with ROCK inhibitor treatment. To gain more mechanistic insights, autophagy flux and the role of autophagy were assessed in various conditions with chloroquine. RESULTS: Inhibition of ROCK with Y-27632 improved muscle force production in 3D-engineered mdx muscles (+25% from three independent experiments, P < 0.05) and in mice (+25%, P < 0.001). Unlike suggested by previous studies, this improvement was independent of muscle differentiation or quantity and instead related to increased muscle quality. We found that ARHGEF3 was elevated and responsible for RhoA/ROCK activation in mdx muscles, and that depleting ARHGEF3 in mdx mice restored muscle quality (up to +36%, P < 0.01) and morphology without affecting regeneration. Conversely, overexpressing ARHGEF3 further compromised mdx muscle quality (-13% vs. empty vector control, P < 0.01) in GEF activity- and ROCK-dependent manner. Notably, ARHGEF3/ROCK inhibition exerted the effects by rescuing autophagy which is commonly impaired in dystrophic muscles. CONCLUSIONS: Our findings uncover a new pathological mechanism of muscle weakness in DMD involving the ARHGEF3-ROCK-autophagy pathway and the therapeutic potential of targeting ARHGEF3 in DMD.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Mice , Dystrophin/genetics , Dystrophin/metabolism , Mice, Inbred mdx , Muscle Weakness/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology
4.
Front Physiol ; 12: 779547, 2021.
Article in English | MEDLINE | ID: mdl-34916960

ABSTRACT

Sarcopenia, or age-related skeletal muscle atrophy and weakness, imposes significant clinical and economic burdens on affected patients and societies. Neurological degeneration, such as motoneuron death, has been recognized as a key contributor to sarcopenia. However, little is known about how aged/sarcopenic muscle adapts to this denervation stress. Here, we show that mice at 27months of age exhibit clear signs of sarcopenia but no accelerated denervation-induced muscle atrophy when compared to 8-month-old mice. Surprisingly, aging lends unique atrophy resistance to tibialis anteria muscle, accompanied by an increase in the cascade of mammalian target of rapamycin complex 1 (mTORC1)-independent anabolic events involving Akt signaling, rRNA biogenesis, and protein synthesis during denervation. These results expand our understanding of age-dependent stress responses and may help develop better countermeasures to sarcopenia.

5.
FASEB J ; 35(10): e21948, 2021 10.
Article in English | MEDLINE | ID: mdl-34569098

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are house-keeping enzymes that are essential for protein synthesis. However, it has become increasingly evident that some aaRSs also have non-translational functions. Here we report the identification of a non-translational function of threonyl-tRNA synthetase (ThrRS) in myogenic differentiation. We find that ThrRS negatively regulates myoblast differentiation in vitro and injury-induced skeletal muscle regeneration in vivo. This function is independent of amino acid binding or aminoacylation activity of ThrRS, and knockdown of ThrRS leads to enhanced differentiation without affecting the global protein synthesis rate. Furthermore, we show that the non-catalytic new domains (UNE-T and TGS) of ThrRS are both necessary and sufficient for the myogenic function. In searching for a molecular mechanism of this new function, we find the kinase JNK to be a downstream target of ThrRS. Our data further reveal MEKK4 and MKK4 as upstream regulators of JNK in myogenesis and the MEKK4-MKK4-JNK pathway to be a mediator of the myogenic function of ThrRS. Finally, we show that ThrRS physically interacts with Axin1, disrupts Axin1-MEKK4 interaction and consequently inhibits JNK signaling. In conclusion, we uncover a non-translational function for ThrRS in the maintenance of homeostasis of skeletal myogenesis and identify the Axin1-MEKK4-MKK4-JNK signaling axis to be an immediate target of ThrRS action.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Muscle Development , Threonine-tRNA Ligase/metabolism , Animals , Axin Protein/metabolism , Female , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 4/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding , Protein Biosynthesis , Protein Domains , Threonine-tRNA Ligase/chemistry
6.
Cell Death Discov ; 7(1): 74, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33846288

ABSTRACT

Skeletal muscle denervation occurs in diverse conditions and causes severe muscle atrophy. Signaling by mammalian target of rapamycin complex 1 (mTORC1) plays a central role in the maintenance of skeletal muscle mass by regulating net protein balance; yet, its role in denervation-induced atrophy is unclear. In this study, by using skeletal muscle-specific and inducible raptor knockout mice, we demonstrate that signaling through mTORC1 is activated during denervation and plays an essential role in mitigating the atrophy of non-type IIB muscle fibers. Measurements of protein synthesis rates of individual fibers suggest that denervation increases protein synthesis specifically in non-type IIB muscle fibers and that mTORC1 is required for this event. Furthermore, denervation induced a more pronounced increase in the level of phosphorylated ribosomal S6 protein in non-type IIB muscle fibers than in type IIB muscle fibers. Collectively, our results unveil a novel role for mTORC1 in mediating a fiber type-specific regulation of muscle size and protein synthesis during denervation.

7.
Autophagy ; 17(4): 1044-1045, 2021 04.
Article in English | MEDLINE | ID: mdl-33557669

ABSTRACT

Macroautophagy/autophagy plays a critical role in restoring/maintaining skeletal muscle function under normal conditions as well as during damage-induced regeneration. This homeostatic degradation mechanism, however, rapidly declines with aging leading to functional deterioration of skeletal muscles. ARHGEF3 is a RHOA- and RHOB-specific GEF capable of inhibiting myogenic AKT signaling independently of its GEF function. Our recent study reveals that ARHGEF3 negatively regulates skeletal muscle autophagy during injury-induced regeneration and normal aging. By enhancing autophagy, arhgef3 knockout augments the regenerative capacity of muscles in both young and regeneration-defective middle-aged mice and prevents age-related loss of muscle strength. We further show that the GEF activity of ARHGEF3 toward ROCK, but not its downstream target AKT, mediates its function in muscle regeneration. These findings suggest that ARHGEF3 may be a candidate therapeutic target for impaired muscle regeneration, age-related muscle weakness, and potentially other diseases arising from aberrant regulation of autophagy.


Subject(s)
Autophagy , Muscle, Skeletal , Animals , Mice , Muscle Development , Rho Guanine Nucleotide Exchange Factors , Signal Transduction
9.
Cell Rep ; 34(1): 108594, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33406419

ABSTRACT

Skeletal muscle regeneration after injury is essential for maintaining muscle function throughout aging. ARHGEF3, a RhoA/B-specific GEF, negatively regulates myoblast differentiation through Akt signaling independently of its GEF activity in vitro. Here, we report ARHGEF3's role in skeletal muscle regeneration revealed by ARHGEF3-KO mice. These mice exhibit indiscernible phenotype under basal conditions. Upon acute injury, however, ARHGEF3 deficiency enhances the mass/fiber size and function of regenerating muscles in both young and regeneration-defective middle-aged mice. Surprisingly, these effects occur independently of Akt but via the GEF activity of ARHGEF3. Consistently, overexpression of ARHGEF3 inhibits muscle regeneration in a Rho-associated kinase-dependent manner. We further show that ARHGEF3 KO promotes muscle regeneration through activation of autophagy, a process that is also critical for maintaining muscle strength. Accordingly, ARHGEF3 depletion in old mice prevents muscle weakness by restoring autophagy. Taken together, our findings identify a link between ARHGEF3 and autophagy-related muscle pathophysiology.


Subject(s)
Autophagy , Muscle Strength , Muscle, Skeletal/metabolism , Regeneration , Rho Guanine Nucleotide Exchange Factors/physiology , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Aging/metabolism , Animals , Cell Differentiation , Female , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoblasts/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
J Clin Invest ; 129(5): 2088-2093, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30985292

ABSTRACT

Aside from its catalytic function in protein synthesis, leucyl-tRNA synthetase (LRS) has a nontranslational function in regulating cell growth via the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway by sensing amino acid availability. mTOR also regulates skeletal myogenesis, but the signaling mechanism is distinct from that in cell growth regulation. A role of LRS in myogenesis has not been reported. Here we report that LRS negatively regulated myoblast differentiation in vitro. This function of LRS was independent of its regulation of protein synthesis, and it required leucine-binding but not tRNA charging activity of LRS. Local knock down of LRS accelerated muscle regeneration in a mouse injury model, and so did the knock down of Rag or Raptor. Further in vitro studies established a Rag-mTORC1 pathway, which inhibits the IRS1-PI3K-Akt pathway, to be the mediator of the nontranslational function of LRS in myogenesis. BC-LI-0186, an inhibitor reported to disrupt LRS-Rag interaction, promoted robust muscle regeneration with enhanced functional recovery, and this effect was abolished by cotreatment with an Akt inhibitor. Taken together, our findings revealed what we believe is a novel function for LRS in controlling the homeostasis of myogenesis, and suggested a potential therapeutic strategy to target a noncanonical function of a housekeeping protein.


Subject(s)
Gene Expression Regulation, Neoplastic , Leucine-tRNA Ligase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle, Skeletal/physiology , Protein Biosynthesis , Regeneration , Animals , Catalysis , Catalytic Domain , Cell Differentiation , Female , Homeostasis , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Muscle Development , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Transfer/metabolism , Treatment Outcome
11.
FASEB J ; 33(3): 4021-4034, 2019 03.
Article in English | MEDLINE | ID: mdl-30509128

ABSTRACT

It is well known that an increase in mechanical loading can induce skeletal muscle hypertrophy, and a long standing model in the field indicates that mechanical loads induce hypertrophy via a mechanism that requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Specifically, it has been widely proposed that mechanical loads activate signaling through mTORC1 and that this, in turn, promotes an increase in the rate of protein synthesis and the subsequent hypertrophic response. However, this model is based on a number of important assumptions that have not been rigorously tested. In this study, we created skeletal muscle specific and inducible raptor knockout mice to eliminate signaling by mTORC1, and with these mice we were able to directly demonstrate that mechanical stimuli can activate signaling by mTORC1, and that mTORC1 is necessary for mechanical load-induced hypertrophy. Surprisingly, however, we also obtained multiple lines of evidence that indicate that mTORC1 is not required for a mechanical load-induced increase in the rate of protein synthesis. This observation highlights an important shortcoming in our understanding of how mechanical loads induce hypertrophy and illustrates that additional mTORC1-independent mechanisms play a critical role in this process.-You, J.-S., McNally, R. M., Jacobs, B. L., Privett, R. E., Gundermann, D. M., Lin, K.-H., Steinert, N. D., Goodman, C. A., Hornberger, T. A. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy.


Subject(s)
Muscle, Skeletal/metabolism , Physical Exertion , Regulatory-Associated Protein of mTOR/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Hypertrophy/etiology , Hypertrophy/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Protein Biosynthesis , Regulatory-Associated Protein of mTOR/genetics , Signal Transduction
12.
Sci Signal ; 11(530)2018 05 15.
Article in English | MEDLINE | ID: mdl-29764991

ABSTRACT

Skeletal muscle rapidly remodels in response to various stresses, and the resulting changes in muscle mass profoundly influence our health and quality of life. We identified a diacylglycerol kinase ζ (DGKζ)-mediated pathway that regulated muscle mass during remodeling. During mechanical overload, DGKζ abundance was increased and required for effective hypertrophy. DGKζ not only augmented anabolic responses but also suppressed ubiquitin-proteasome system (UPS)-dependent proteolysis. We found that DGKζ inhibited the transcription factor FoxO that promotes the induction of the UPS. This function was mediated through a mechanism that was independent of kinase activity but dependent on the nuclear localization of DGKζ. During denervation, DGKζ abundance was also increased and was required for mitigating the activation of FoxO-UPS and the induction of atrophy. Conversely, overexpression of DGKζ prevented fasting-induced atrophy. Therefore, DGKζ is an inhibitor of the FoxO-UPS pathway, and interventions that increase its abundance could prevent muscle wasting.


Subject(s)
Diacylglycerol Kinase/metabolism , Diacylglycerol Kinase/physiology , Forkhead Box Protein O3/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/pathology , Ubiquitin/metabolism , Unfolded Protein Response , Animals , Cell Nucleus/metabolism , Cells, Cultured , Cytoplasm/metabolism , Female , Gene Expression Regulation , Hypertrophy/etiology , Hypertrophy/metabolism , Hypertrophy/pathology , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , NF-kappa B/metabolism , Proteolysis , Rats , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
13.
J Physiol ; 595(15): 5209-5226, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28542873

ABSTRACT

KEY POINTS: Mechanical signals play a critical role in the regulation of muscle mass, but the molecules that sense mechanical signals and convert this stimulus into the biochemical events that regulate muscle mass remain ill-defined. Here we report a mass spectrometry-based workflow to study the changes in protein phosphorylation that occur in mouse skeletal muscle 1 h after a bout of electrically evoked maximal-intensity contractions (MICs). Our dataset provides the first comprehensive map of the MIC-regulated phosphoproteome. Using unbiased bioinformatics approaches, we demonstrate that our dataset leads to the identification of many well-known MIC-regulated signalling pathways, as well as to a plethora of novel MIC-regulated events. We expect that our dataset will serve as a fundamentally important resource for muscle biologists, and help to lay the foundation for entirely new hypotheses in the field. ABSTRACT: The maintenance of skeletal muscle mass is essential for health and quality of life. It is well recognized that maximal-intensity contractions, such as those which occur during resistance exercise, promote an increase in muscle mass. Yet, the molecules that sense the mechanical information and convert it into the signalling events (e.g. phosphorylation) that drive the increase in muscle mass remain undefined. Here we describe a phosphoproteomics workflow to examine the effects of electrically evoked maximal-intensity contractions (MICs) on protein phosphorylation in mouse skeletal muscle. While a preliminary phosphoproteomics experiment successfully identified a number of MIC-regulated phosphorylation events, a large proportion of these identifications were present on highly abundant myofibrillar proteins. We subsequently incorporated a centrifugation-based fractionation step to deplete the highly abundant myofibrillar proteins and performed a second phosphoproteomics experiment. In total, we identified 5983 unique phosphorylation sites of which 663 were found to be regulated by MIC. GO term enrichment, phosphorylation motif analyses, and kinase-substrate predictions indicated that the MIC-regulated phosphorylation sites were chiefly modified by mTOR, as well as multiple isoforms of the MAPKs and CAMKs. Moreover, a high proportion of the regulated phosphorylation sites were found on proteins that are associated with the Z-disc, with over 74% of the Z-disc proteins experiencing robust changes in phosphorylation. Finally, our analyses revealed that the phosphorylation state of two Z-disc kinases (striated muscle-specific serine/threonine protein kinase and obscurin) was dramatically altered by MIC, and we propose ways these kinases could play a fundamental role in skeletal muscle mechanotransduction.


Subject(s)
Muscle Contraction/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Animals , Electric Stimulation , Male , Mass Spectrometry , Mice, Inbred C57BL , Phosphorylation , Proteomics
14.
J Biol Chem ; 292(17): 6987-6997, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28289099

ABSTRACT

Mechanistic target of rapamycin (mTOR) signaling is necessary to generate a mechanically induced increase in skeletal muscle mass, but the mechanism(s) through which mechanical stimuli regulate mTOR signaling remain poorly defined. Recent studies have suggested that Ras homologue enriched in brain (Rheb), a direct activator of mTOR, and its inhibitor, the GTPase-activating protein tuberin (TSC2), may play a role in this pathway. To address this possibility, we generated inducible and skeletal muscle-specific knock-out mice for Rheb (iRhebKO) and TSC2 (iTSC2KO) and mechanically stimulated muscles from these mice with eccentric contractions (EC). As expected, the knock-out of TSC2 led to an elevation in the basal level of mTOR signaling. Moreover, we found that the magnitude of the EC-induced activation of mTOR signaling was significantly blunted in muscles from both inducible and skeletal muscle-specific knock-out mice for Rheb and iTSC2KO mice. Using mass spectrometry, we identified six sites on TSC2 whose phosphorylation was significantly altered by the EC treatment. Employing a transient transfection-based approach to rescue TSC2 function in muscles of the iTSC2KO mice, we demonstrated that these phosphorylation sites are required for the role that TSC2 plays in the EC-induced activation of mTOR signaling. Importantly, however, these phosphorylation sites were not required for an insulin-induced activation of mTOR signaling. As such, our results not only establish a critical role for Rheb and TSC2 in the mechanical activation of mTOR signaling, but they also expose the existence of a previously unknown branch of signaling events that can regulate the TSC2/mTOR pathway.


Subject(s)
Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Brain/metabolism , Female , Homozygote , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Muscle Contraction , Muscle, Skeletal/metabolism , Neuropeptides/genetics , Phosphorylation , Plasmids/metabolism , Ras Homolog Enriched in Brain Protein , Sirolimus/chemistry , Tamoxifen/chemistry , Tuberous Sclerosis Complex 2 Protein
15.
Oncotarget ; 8(12): 18754-18772, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-27813490

ABSTRACT

The translationally controlled tumor protein (TCTP) is upregulated in a range of cancer cell types, in part, by the activation of the mechanistic target of rapamycin (mTOR). Recently, TCTP has also been proposed to act as an indirect activator of mTOR. While it is known that mTOR plays a major role in the regulation of skeletal muscle mass, very little is known about the role and regulation of TCTP in this post-mitotic tissue. This study shows that muscle TCTP and mTOR signaling are upregulated in a range of mouse models (mdx mouse, mechanical load-induced hypertrophy, and denervation- and immobilization-induced atrophy). Furthermore, the increase in TCTP observed in the hypertrophic and atrophic conditions occurred, in part, via a rapamycin-sensitive mTOR-dependent mechanism. However, the overexpression of TCTP was not sufficient to activate mTOR signaling (or increase protein synthesis) and is thus unlikely to take part in a recently proposed positive feedback loop with mTOR. Nonetheless, TCTP overexpression was sufficient to induce muscle fiber hypertrophy. Finally, TCTP overexpression inhibited the promoter activity of the muscle-specific ubiquitin proteasome E3-ligase, MuRF1, suggesting that TCTP may play a role in inhibiting protein degradation. These findings provide novel data on the role and regulation of TCTP in skeletal muscle in vivo.


Subject(s)
Biomarkers, Tumor/metabolism , Muscle, Skeletal/metabolism , Animals , Atrophy/metabolism , Atrophy/pathology , Blotting, Western , Disease Models, Animal , Electroporation , Hypertrophy/metabolism , Hypertrophy/pathology , Immobilization , Immunohistochemistry , Mice , Mice, Inbred mdx , Muscle Denervation , Muscle, Skeletal/pathology , Tumor Protein, Translationally-Controlled 1
16.
Dis Model Mech ; 8(9): 1059-69, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26092121

ABSTRACT

The maintenance of skeletal muscle mass contributes substantially to health and to issues associated with the quality of life. It has been well recognized that skeletal muscle mass is regulated by mechanically induced changes in protein synthesis, and that signaling by mTOR is necessary for an increase in protein synthesis and the hypertrophy that occurs in response to increased mechanical loading. However, the role of mTOR signaling in the regulation of protein synthesis and muscle mass during decreased mechanical loading remains largely undefined. In order to define the role of mTOR signaling, we employed a mouse model of hindlimb immobilization along with pharmacological, mechanical and genetic means to modulate mTOR signaling. The results first showed that immobilization induced a decrease in the global rates of protein synthesis and muscle mass. Interestingly, immobilization also induced an increase in mTOR signaling, eIF4F complex formation and cap-dependent translation. Blocking mTOR signaling during immobilization with rapamycin not only impaired the increase in eIF4F complex formation, but also augmented the decreases in global protein synthesis and muscle mass. On the other hand, stimulating immobilized muscles with isometric contractions enhanced mTOR signaling and rescued the immobilization-induced decrease in global protein synthesis through a rapamycin-sensitive mechanism that was independent of ribosome biogenesis. Unexpectedly, the effects of isometric contractions were also independent of eIF4F complex formation. Similar to isometric contractions, overexpression of Rheb in immobilized muscles enhanced mTOR signaling, cap-dependent translation and global protein synthesis, and prevented the reduction in fiber size. Therefore, we conclude that the activation of mTOR signaling is both necessary and sufficient to alleviate the decreases in protein synthesis and muscle mass that occur during immobilization. Furthermore, these results indicate that the activation of mTOR signaling is a viable target for therapies that are aimed at preventing muscle atrophy during periods of mechanical unloading.


Subject(s)
Immobilization , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology , Protein Biosynthesis , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Eukaryotic Initiation Factor-4F/metabolism , Female , Immunohistochemistry , Isometric Contraction , Mice , Muscle Contraction , Ribosomes/metabolism , Sirolimus/chemistry , Stress, Mechanical
17.
FEBS Lett ; 589(13): 1491-7, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25959868

ABSTRACT

Mechanically-induced skeletal muscle growth is regulated by mammalian/mechanistic target of rapamycin complex 1 (mTORC1). Yes-Associated Protein (YAP) is a mechanically-sensitive, and growth-related, transcriptional co-activator that can regulate mTORC1. Here we show that, in skeletal muscle, mechanical overload promotes an increase in YAP expression; however, the time course of YAP expression is markedly different from that of mTORC1 activation. We also show that the overexpression of YAP induces hypertrophy via an mTORC1-independent mechanism. Finally, we provide preliminary evidence of possible mediators of YAP-induced hypertrophy (e.g. increased MyoD and c-Myc expression, and decreased Smad2/3 activity and muscle ring finger 1 (MuRF1) expression).


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Muscle, Skeletal/metabolism , Phosphoproteins/metabolism , Up-Regulation , Adaptor Proteins, Signal Transducing/genetics , Animals , Blotting, Western , Cell Cycle Proteins , Female , Gene Expression Regulation , Hypertrophy , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Microscopy, Fluorescence , Multiprotein Complexes/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/pathology , MyoD Protein/genetics , Phosphoproteins/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Stress, Mechanical , TOR Serine-Threonine Kinases/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/genetics , YAP-Signaling Proteins
18.
Proc Natl Acad Sci U S A ; 111(44): 15756-61, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25336758

ABSTRACT

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.


Subject(s)
Gene Expression Regulation/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Physical Conditioning, Animal , Receptors, G-Protein-Coupled/biosynthesis , Signal Transduction/physiology , Animals , Collagen Type III/biosynthesis , Hypertrophy/metabolism , Insulin-Like Growth Factor I/biosynthesis , Male , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/metabolism
19.
Mol Biol Cell ; 25(12): 1867-76, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24790096

ABSTRACT

After damage, cells reseal their plasma membrane and repair the underlying cortical cytoskeleton. Although many different proteins have been implicated in cell repair, the potential role of specific lipids has not been explored. Here we report that cell damage elicits rapid formation of spatially organized lipid domains around the damage site, with different lipids concentrated in different domains as a result of both de novo synthesis and transport. One of these lipids-diacylglycerol (DAG)-rapidly accumulates in a broad domain that overlaps the zones of active Rho and Cdc42, GTPases that regulate repair of the cortical cytoskeleton. Formation of the DAG domain is required for Cdc42 and Rho activation and healing. Two DAG targets, protein kinase C (PKC) ß and η, are recruited to cell wounds and play mutually antagonistic roles in the healing process: PKCß participates in Rho and Cdc42 activation, whereas PKCη inhibits Rho and Cdc42 activation. The results reveal an unexpected diversity in subcellular lipid domains and the importance of such domains for a basic cellular process.


Subject(s)
Cell Membrane Structures/physiology , Diglycerides/physiology , Animals , Diacylglycerol Kinase/metabolism , Monomeric GTP-Binding Proteins/metabolism , Oocytes/metabolism , Phosphatidylcholines/metabolism , Phospholipase D/metabolism , Protein Transport , Rho Guanine Nucleotide Exchange Factors/metabolism , Single-Cell Analysis , Transferases (Other Substituted Phosphate Groups)/metabolism , Type C Phospholipases/metabolism , Xenopus Proteins/metabolism , Xenopus laevis
20.
J Biol Chem ; 289(3): 1551-63, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24302719

ABSTRACT

The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass.


Subject(s)
Diacylglycerol Kinase/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphatidic Acids/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Diacylglycerol Kinase/genetics , Hypertrophy/genetics , Hypertrophy/metabolism , Hypertrophy/pathology , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Knockout , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Organ Size/genetics , Phosphatidic Acids/genetics , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...