Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Immunology ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934051

ABSTRACT

Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.

2.
Opt Express ; 32(7): 11259-11270, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570977

ABSTRACT

Photonic topological insulators with topologically protected edge states featuring one-way, robustness and backscattering-immunity possess extraordinary abilities to steer and manipulate light. In this work, we construct a topological heterostructure (TH) consisting of a domain of nontrivial pseudospin-type topological photonic crystals (PCs) sandwiched between two domains of trivial PCs based on two-dimensional all-dielectric core-shell PCs in triangle lattice. We consider three THs with different number of layers in the middle nontrivial domain (i.e., one-layer, two-layer, three-layer) and demonstrate that the projected band diagrams of the three THs host interesting topological waveguide states (TWSs) with properties of one-way, large-area, broad-bandwidth and robustness due to coupling effect of the helical edge states associated with the two domain-wall interfaces. Moreover, taking advantage of the tunable bandgap between the TWSs by the layer number of the middle domain due to the coupling effect, a topological Y-splitter with functionality of wavelength division multiplexing is explicitly demonstrated exploiting the unique feature of the dispersion curves of TWSs in the three THs. Our work not only offers a new method to realize pseudospin-polarized large-area TWSs with tunable mode-width, but also could provide new opportunities for practical applications in on-chip multifunctional (i.e., wavelength division multiplexing) photonic devices with topological protection and information processing with pseudospin-dependent transport.

3.
Opt Express ; 32(6): 8751-8762, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571125

ABSTRACT

The combination of surface coils and metamaterials remarkably enhance magnetic resonance imaging (MRI) performance for significant local staging flexibility. However, due to the coupling in between, impeded signal-to-noise ratio (SNR) and low-contrast resolution, further hamper the future growth in clinical MRI. In this paper, we propose a high-Q metasurface decoupling isolator fueled by topological LC loops for 1.5T surface coil MRI system, increasing the magnetic field up to fivefold at 63.8 MHz. We have employed a polarization conversion mechanism to effectively eliminate the coupling between the MRI metamaterial and the radio frequency (RF) surface transmitter-receiver coils. Furthermore, a high-Q metasurface isolator was achieved by taking advantage of bound states in the continuum (BIC) for extremely high-resolution MRI and spectroscopy. An equivalent physical model of the miniaturized metasurface design was put forward through LC circuit analysis. This study opens up a promising route for the easy-to-use and portable surface coil MRI scanners.

4.
Opt Express ; 31(6): 10401-10410, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157587

ABSTRACT

We demonstrate that the influence of Kerr effect on valley-Hall topological transport in graphene metasurfaces can be used to implement an all-optical switch. In particular, by taking advantage of the large Kerr coefficient of graphene, the index of refraction of a topologically-protected graphene metasurface can be tuned via a pump beam, which results in an optically controllable frequency shift of the photonic bands of the metasurface. This spectral variation can in turn be readily employed to control and switch the propagation of an optical signal in certain waveguide modes of the graphene metasurface. Importantly, our theoretical and computational analysis reveals that the threshold pump power needed to optically switch ON/OFF the signal is strongly dependent on the group velocity of the pump mode, especially when the device is operated in the slow-light regime. This study could open up new routes towards active photonic nanodevices whose underlying functionality stems from their topological characteristics.

5.
Nat Commun ; 12(1): 5468, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526488

ABSTRACT

Topological photonics has revolutionized our understanding of light propagation, providing a robust way to manipulate light. So far, most of studies in this field are focused on designing a static photonic structure. Developing a dynamic photonic topological platform to switch multiple topological functionalities at ultrafast speed is still a great challenge. Here we theoretically propose and experimentally demonstrate a reprogrammable plasmonic topological insulator, where the topological propagation route can be dynamically changed at nanosecond-level switching time, leading to an experimental demonstration of ultrafast multi-channel optical analog-digital converter. Due to the innovative use of electric switches to implement the programmability of plasmonic topological insulator, each unit cell can be encoded by dynamically controlling its digital plasmonic states while keeping its geometry and material parameters unchanged. Our reprogrammable topological plasmonic platform is fabricated by the printed circuit board technology, making it much more compatible with integrated photoelectric systems. Furthermore, due to its flexible programmability, many photonic topological functionalities can be integrated into this versatile topological platform.

6.
Sci Adv ; 6(13): eaaz3910, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32258407

ABSTRACT

We study topologically protected four-wave mixing (FWM) interactions in a plasmonic metasurface consisting of a periodic array of nanoholes in a graphene sheet, which exhibits a wide topological bandgap at terahertz frequencies upon the breaking of time reversal symmetry by a static magnetic field. We demonstrate that due to the significant nonlinearity enhancement and large life time of graphene plasmons in specific configurations, a net gain of FWM interaction of plasmonic edge states located in the topological bandgap can be achieved with a pump power of less than 10 nW. In particular, we find that the effective nonlinear edge-waveguide coefficient is about γ ≃ 1.1 × 1013 W-1 m-1, i.e., more than 10 orders of magnitude larger than that of commonly used, highly nonlinear silicon photonic nanowires. These findings could pave a new way for developing ultralow-power-consumption, highly integrated, and robust active photonic systems at deep-subwavelength scale for applications in quantum communications and information processing.

7.
Opt Lett ; 44(12): 3030-3033, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199373

ABSTRACT

We demonstrate that the effective 3rd-order nonlinear susceptibility of a graphene sheet can be enhanced by more than 2 orders of magnitude by patterning it into a graphene metasurface. In addition, to gain deeper physical insights into this phenomenon, we introduce a versatile homogenization method, which is subsequently used to characterize quantitatively this nonlinearity enhancement effect by calculating the effective linear and nonlinear susceptibility of graphene metasurfaces. The accuracy of the proposed homogenization method is demonstrated by comparing its predictions to those obtained from the Kramers-Kronig relations. This work may open new opportunities to explore novel physics pertaining to nonlinear optical interactions in graphene metasurfaces.

8.
Opt Express ; 26(23): 30383-30392, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469912

ABSTRACT

We demonstrate that stimulated Raman amplification can be enhanced by more than four orders of magnitude in a silicon metasurface consisting of a periodic distribution of specially engineered photonic crystal (PhC) cavities in a silicon PhC slab waveguide. In particular, by designing the PhC cavities so as they possess two optical modes separated by the Raman frequency of silicon, one can achieve large optical field enhancement at both the pump and Stokes frequencies. As a consequence, the effective Raman susceptibility of the nonlinear metasurface, calculated using a novel homogenization technique, is significantly larger than the intrinsic Raman susceptibility of silicon. Implications to technological applications of our theoretical study are discussed, too.

9.
Sci Rep ; 8(1): 3586, 2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29483517

ABSTRACT

Second-harmonic generation (SHG) from nanoparticles made of centrosymmetric materials provides an effective tool to characterize many important properties of photonic structures at the subwavelength scale. Here we study the relative contribution of surface and bulk effects to SHG for plasmonic and dielectric nanostructures made of centrosymmetric materials in both dispersive and non-dispersive regimes. Our calculations of the far-fields generated by the nonlinear surface and bulk currents reveal that the size of the nanoparticle strongly influences the amount and relative contributions of the surface and bulk SHG effects. Importantly, our study reveals that, whereas for plasmonic nanoparticles the surface contribution is always dominant, the bulk and surface SHG effects can become comparable for dielectric nanoparticles, and thus they both should be taken into account when analyzing nonlinear optical properties of all-dielectric nanostructures.

10.
Opt Express ; 26(2): 1882-1894, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401910

ABSTRACT

Graphene gratings provide a promising route towards the miniaturization of THz metasurfaces and other photonic devices, chiefly due to remarkable optical properties of graphene. In this paper, we propose novel graphene nanostructures for passive and active control of the polarization state of THz waves. The proposed devices are composed of two crossed graphene gratings separated by an insulator spacer. Because of specific linear and nonlinear properties of graphene, these optical metasurfaces can be utilized as ultrathin polarization converters operating in the THz frequency domain. In particular, our study shows that properly designed graphene polarizers can effectively select specific polarization states, their thickness being about a tenth of the operating wavelength and size more than 80× smaller than that of similar metallic devices. Equally important, we demonstrate that the nonlinear optical properties of graphene can be utilized to actively control the polarization state of generated higher harmonics.

11.
Philos Trans A Math Phys Eng Sci ; 375(2090)2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28220005

ABSTRACT

Intriguing and unusual physical properties of graphene offer remarkable potential for advanced, photonics-related technological applications, particularly in the area of nonlinear optics at the deep-subwavelength scale. In this study, we use a recently developed numerical method to illustrate an efficient mechanism that can lead to orders of magnitude enhancement of the third-harmonic generation in graphene diffraction gratings. In particular, we demonstrate that by taking advantage of the geometry dependence of the resonance wavelength of localized surface-plasmon polaritons of graphene ribbons and discs one can engineer the spectral response of graphene gratings so that strong plasmonic resonances exist at both the fundamental frequency and third-harmonic (TH). As a result of this double-resonant mechanism for optical near-field enhancement, the intensity of the TH can be increased by more than six orders of magnitude.This article is part of the themed issue 'New horizons for nanophotonics'.

SELECTION OF CITATIONS
SEARCH DETAIL
...