Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 122: 284-289, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30268965

ABSTRACT

A glucose/oxygen biofuel cell (BFC) that can operate continuously under oxygen-free conditions is described. The oxygen-deficit limitations of metabolite/oxygen enzymatic BFCs have been addressed by using an oxygen-rich cathode binder material, polychlorotrifluoroethylene (PCTFE), which provides an internal oxygen supply for the BFC reduction reaction. This oxygen-rich cathode component mitigates the potential power loss in oxygen-free medium or during external oxygen fluctuations through internal supply of oxygen, while the bioanode employs glucose oxidase-mediated reactions. The internal oxygen supply leads to a prolonged energy-harvesting in oxygen-free solutions, e.g., maintaining over 90% and 70% of its initial power during 10- and 24-h operations, respectively, in the absence of oxygen. The new strategy holds considerable promise for energy-harvesting and self-powered biosensing applications in oxygen-deficient conditions.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques/instrumentation , Glucose/chemistry , Oxygen/chemistry , Polyethylenes/chemistry , Anaerobiosis , Aspergillus niger/enzymology , Biosensing Techniques/economics , Electrodes , Equipment Design , Glucose Oxidase/chemistry , Oxidation-Reduction
2.
Sci Rep ; 7(1): 7317, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28779081

ABSTRACT

Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi0.5Sb1.5Te3 or n-type Bi2Te2.7Se0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

3.
Phys Chem Chem Phys ; 18(38): 26376-26382, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27711466

ABSTRACT

Zn aqueous batteries typically suffer from poor cycle life because water soluble zincate ions are formed during the oxidation of Zn. When Zn is oxidized, most of the Zn2+ ions detach from the current collector and become electrochemically inactive, leaving the battery non-rechargeable. Numerous reports demonstrate the use of Bi2O3 as an electrode additive to enhance electrochemical performance and they attribute this phenomenon to the improvement in electrical conductivity. However, conductivity does not have an effect on the intrinsic solubility of the zincate ion. We conduct a series of characterizations to provide a comprehensive mechanistic role of Bi2O3 in the Zn electrode. We find that upon oxidation, zincate ions are formed but they relax into ZnO on the surface of the bismuth species. This work proposes that the reason for the prolonged cycle life is due to the deposition of ZnO through relaxation and this prevents losing electrochemically active materials. This finding paves the way for further improving the cycle life and understanding the mechanism of the Zn based rechargeable aqueous batteries and possibly other conversion types of rechargeable batteries.

4.
Nano Lett ; 16(1): 721-7, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26694819

ABSTRACT

We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Nanotechnology , Nanotubes, Carbon/chemistry , Electrodes , Printing
5.
J Mater Chem A Mater ; 4(47): 18342-18353, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-28439415

ABSTRACT

Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm-2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.

6.
J Nanosci Nanotechnol ; 15(8): 5691-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26369140

ABSTRACT

A novel biosensor for the determination of hydrogen peroxide and glucose was developed based on EGN-TDZ-Pd, as an electrocatalyst. The preparation of graphene oxide (GO) nanosheets was functionalized by combining it with 5-amino-1,3,4-thiadiazole-2-thiol (TDZ) and by covalently bonding it to palladium (Pd) nanoparticles (GO-TDZ-Pd). In the electrochemical investigation, EGN-TDZ-Pd was characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and chronoamperometry (CA) were used to characterize the performance of EGN-TDZ-Pd. The proposed H2O2 biosensor exhibited a wide linear range from 10 µM to 6.5 mM. Also, a glucose biosensor was prepared using glucose oxidase and EGN-TDZ-Pd placed onto a glassy carbon electrode (GCE). The GOx/EGN-TDZ-Pd/GCE was easily prepared using a rapid and simple procedure, and it was utilized for highly sensitive glucose determination.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Glucose/analysis , Graphite/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Adsorption , Azoles/chemistry , Electrodes , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Glucose/chemistry , Glucose Oxidase/chemistry , Metal Nanoparticles/ultrastructure , Oxidation-Reduction , Oxides/chemistry , Reproducibility of Results , Sensitivity and Specificity
7.
J Nanosci Nanotechnol ; 15(8): 5684-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26369139

ABSTRACT

Poly(3,4-ethylenedioxythiophene)-(PEDOT)-functionalized reduced graphene oxide (rGO) with MnO2 nanoparticles (MnO2/PEDOT/rGO) was prepared using electrochemical methods. The MnO2/ PEDOT/rGO was obtained through the electrochemical reduction of PEDOT/GO and under electrochemical treatment in KMnO4. The PEDOT/rGO and MnO2/PEDOT/rGO were characterized by several instrumental and electrochemical methods. The electrocatalytic 02 reduction for both electrodes was investigated via cyclic and hydrodynamic voltammetry in 0.1 M KOH aqueous solutions. The kinetic analysis in comparison to PEDOT/rGO a significant enhancement was found for the MnO2/PEDOT/rGO. The proposed main path in the oxygen reduction reaction (ORR) mechanism on the MnO2/PEDOT/rGO was the direct four-electron transfer process with faster transfer kinetic rate. The better ORR kinetics were obtained due to the excellent composite formation and well attachment of MnO2 NPs within oxide form. The PEDOT/rGO was less stable for long term use than MnO2/PEDOT/rGO.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Graphite/chemistry , Manganese Compounds/chemistry , Models, Chemical , Nanocomposites/chemistry , Oxides/chemistry , Oxygen/chemistry , Polymers/chemistry , Catalysis , Computer Simulation , Electrochemical Techniques , Kinetics , Materials Testing , Nanocomposites/ultrastructure , Oxidation-Reduction , Particle Size , Surface Properties
8.
Food Chem ; 169: 114-9, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25236205

ABSTRACT

Orange II, an azo dye, is sometimes illegally used as a red dye in food products despite its adverse health effects if consumed. Therefore, the determination of low concentrations of Orange II is an important target. An Orange II sensor was prepared using electrochemically reduced graphene oxide grafted with 5-amino-1,3,4-thiadiazole-2-thiol-Pt nanoparticles (denoted as ERGO-ATDT-Pt) onto a glassy carbon electrode (GCE) and investigated for Orange II detection in 0.1M acetate buffer solution (ABS at pH 4.5) with prominent reversible redox peaks. A wide linear range of 1×10(-)(8)-6×10(-)(7)M with a low detection limit of 3.4×10(-)(10)M (s/n=3) was found for Orange II detection. This developed ERGO-ATDT-Pt/GCE sensor showed good selectivity, excellent stability and better response to the real sample analysis with excellent recovery.


Subject(s)
Azo Compounds/analysis , Benzenesulfonates/analysis , Electrochemical Techniques/methods , Graphite/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Limit of Detection , Nanoparticles/chemistry , Oxidation-Reduction
9.
J Nanosci Nanotechnol ; 14(6): 4050-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24738350

ABSTRACT

A simple method has adapted to prepare MWCNT grafted Poly(lactic acid) (MWCNT-g-PLA) by intercalative polymerization of poly(lactic acid) in the presence of multi-wall carbon nanotubes (MWCNT) functionalized with hydroxyl groups. The functionalized MWCNT has obtained from the treatment of methylene diphenyl diisocyanate (MDI) with MWCNT, and then the reaction with 1,4-butanediol (BD) to create functional hydroxyl groups. MWCNT-g-PLA-Pd and MWCNT-g-PLA-Pt have prepared from the MWCNT-g-PLA and metal precursors. The synthesized materials have characterized by 1H-NMR, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The MWCNT-g-PLA-Pd is possibilities for employing to electrochemical detection of hydrogen peroxide. Electrocatalytic activities are verified from cyclic voltammetry (CV) and amperometric response in 0.1 M phosphate buffer solution (PBS). The biosensor provided good stability and selectivity towards interferences such as UA, AA, and glucose.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Hydrogen Peroxide/analysis , Lactic Acid/chemistry , Microelectrodes , Nanotubes, Carbon/chemistry , Palladium/chemistry , Polymers/chemistry , Equipment Design , Equipment Failure Analysis , Hydrogen Peroxide/chemistry , Nanotubes, Carbon/ultrastructure , Polyesters
10.
J Nanosci Nanotechnol ; 14(8): 5722-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25935996

ABSTRACT

A simple, eco-friendly and efficient harmless chemical approach has been developed for the simultaneous nitrogen (N) doping and reduction of graphene oxide (GO) by cost free human urine using simple refluxing. Large-scale preparation of graphene has been hindered largely by several issues, such as highly toxic reducing agents that are harmful to human health and environment, complicated reduction process and costly chemicals. Human urine is a natural precursor of urea with no cost. In this process, the NH3 has acted as not only reducing but also doping agent that produced via thermal decomposition of urea, while the N doping level of ~11.1 at% is achieved. For the first time we have used urine as a reductant and doping agent in such a high class chemical technology. The simultaneous reduction and N-doping of GO using urine (denoted as UNG) have confirmed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis spectroscopy. The resultant UNG has demonstrated to show remarkable electrocatalytic activity toward oxygen reduction reaction (ORR) with better fuel selectivity, and stability than that of the commercially available 20 wt% Pt/C electrode using cyclic voltammetry (CV) and chronoamperometry.


Subject(s)
Alkalies/chemistry , Graphite/chemistry , Nitrogen/chemistry , Urine , Humans , Oxygen/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
11.
J Nanosci Nanotechnol ; 12(5): 3943-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22852329

ABSTRACT

The electrocatalytic reduction of hydrogen peroxide on thioalted graphene oxide (t-GO) covalent bonded to palladium nanoparticles was used as the basis of an H2O2 biosensor. Poly (diallydimethylammonium chloride)-coated t-GO-Pd on glassy carbon electrodes was easily and quickly prepared and gave sensitive measurements of H2O2 concentration. The Pd nanoparticles covalently bonded to the thiolated graphene oxide were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Comparable results for H2O2 determination were obtained from cyclic voltammetric and amperometric measurements. The proposed H2O2 biosensor exhibited a wide linear range of 10 microM to 10 mM, and a low detection limit of 0.22 microM (S/N = 3), at an applied potential of -0.1 V by the amperometric method.

12.
J Nanosci Nanotechnol ; 12(12): 8886-92, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23447933

ABSTRACT

Pd nanoparticle catalysts supported by thiolated graphene oxide (tGO) on a glassy carbon electrode (GCE), and denoted as tGO-Pd/GCE, are used in this study for the electrochemical determination of hydroxylamine and hydrazine. The physicochemical properties of tGO-Pd were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). They showed strong catalytic activity toward the oxidation of hydroxylamine and hydrazine. Cyclic voltammetry (CV) and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine and hydrazine by tGO-Pd/GCE were 0.31 and 0.25 microM (s/n = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated.


Subject(s)
Electrochemical Techniques , Electrodes , Graphite/chemistry , Hydrazines/chemistry , Hydroxylamine/chemistry , Metal Nanoparticles , Palladium/chemistry , Catalysis , Microscopy, Electron, Transmission , Oxidation-Reduction , Oxides/chemistry , Photoelectron Spectroscopy
13.
J Nanosci Nanotechnol ; 11(3): 2407-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21449400

ABSTRACT

A chemically modified electrode [poly(TAPP)-SWNT/GCE] was prepared by electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP)-single walled carbon nanotubes (SWNT) on the surface of a glassy carbon electrode (GCE). This modified electrode was employed as an electrochemical biosensor for the determination of serotonin concentration and exhibited a typical enhance effect on the current response of serotonin and lower oxidation overpotential. The biosensor was very effective to determined 5-HT in a mixture. The linear response was in the range 2.0 x 10(-7) to 1.0 x 10(-5) M, with a correlation coefficient of 0.999 [i(p)(microA) = 3.406 C (microM)+0.132] on the anodic current, with a detection limit of 1 x 10(-9) M. Due to the relatively low currents and different potentials in the electrochemical responses to ascorbic acid and dopamine, the modified electrode is a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of ascorbic acid and dopamine.


Subject(s)
Conductometry/instrumentation , Electrodes , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Porphyrins/chemistry , Serotonin/analysis , Complex Mixtures/analysis , Crystallization/methods , Electroplating/methods , Equipment Design , Equipment Failure Analysis , Glass/chemistry , Nanotubes, Carbon/ultrastructure , Particle Size
14.
Biosens Bioelectron ; 26(5): 2287-91, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21030237

ABSTRACT

This paper introduces the use of multi walled carbon nanotubes (MWCNTs) with palladium (Pd) nanoparticles in the electrocatalytic reduction of hydrogen peroxide (H(2)O(2)). We have developed and characterized a biosensor for H(2)O(2) based on Nafion(®) coated MWCNTs-Pd nanoparticles on a glassy carbon electrode (GCE). The Nafion(®)/MWCNTs-Pd/GCE electrode was easily prepared in a rapid and simple procedure, and its application improves sensitive determination of H(2)O(2). Characterization of the MWCNTs-Pd nanoparticle film was performed with transmission electron microscopy (TEM), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and amperometry (at an applied potential of -0.2V) measurements were used to study and optimize performance of the resulting peroxide biosensor. The proposed H(2)O(2) biosensor exhibited a wide linear range from 1.0 µM to 10 mM and a low detection limit of 0.3 µM (S/N=3), with a fast response time within 10s. Therefore, this biosensor could be a good candidate for H(2)O(2) analysis.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Glass/chemistry , Hydrogen Peroxide/analysis , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Palladium/chemistry , Equipment Design , Equipment Failure Analysis
15.
J Nanosci Nanotechnol ; 6(11): 3637-41, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17252827

ABSTRACT

2-(2-Hydroxyphenyl)benzoxazole (HPB) was employed as organic ligand and the corresponding zinc complexes (Zn(HPB)2 and Zn(HPB)q) were synthesized. And their EL properties were characterized. The structures of zinc complexes were determined with FT-NMR, FT-IR, UV-Vis, and XPS. The thermal stability showed up to about 300 degrees C under nitrogen flow, which was measured by TGA. The photoluminescence (PL) of zinc complexes were measured from the DMF solution. The PL emitted in blue and yellow region, respectively. The EL devices were fabricated by the vacuum deposition. Two kinds of OLEDs devices were fabricated; ITO/NPB (40 nm)/Zn complexes (60 nm)/LiF/Al and ITO/NPB (40 nm)/Alq3 (60 nm)/Zn complexes (5 nm)/LiF/Al. Both of the EL properties as the emitting and the hole-blocking layer were investigated. The EL emission of Zn(HPB)q exhibited green light centered at 532 nm. The device showed a turn-on voltage at 5 V and a luminance of 6073 cd/m2 at 10 V. Meanwhile, the maximum EL the emission of the Zn(HPB)2 device was found to be at 447 nm. And the device showed a luminance of 2813 cd/m2 at 10 V. The ITO/NPB (40 nm)/Alq3 (60 nm)/Zn(HPB)2 (5 nm)/LiF/Al device showed increased luminance of L=17000 cd/m2 compared to L=12000 cd/m2 for similar device fabricated without the hole-blocking layer. And the turn-on voltage was significantly affected by the existence of the hole-blocking layer.


Subject(s)
Benzoxazoles/chemistry , Electrochemistry/methods , Nanotechnology/methods , Zinc/chemistry , Aluminum/chemistry , Ligands , Light , Models, Chemical , Nanotechnology/instrumentation , Nitrogen/chemistry , Photochemistry/methods , Spectrophotometry/methods , Spectroscopy, Fourier Transform Infrared , Temperature , Ultraviolet Rays , Zinc Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...