Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 675: 772-782, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39002228

ABSTRACT

ZnxCd1-xS photocatalysts have been widely investigated due to their diverse morphologies, suitable band gaps/band edge positions, and high electronic mobility. However, the sluggish charge separation and severe charge recombination impede the application of ZnxCd1-xS for hydrogen evolution reaction (HER). Herein, doping of phosphorus (P) atoms into Zn0.3Cd0.7S has been implemented to elevate S vacancies concentration as well as tune its Fermi level to be located near the impurity level of S vacancies, prolonging the lifetime of photogenerated electrons. Moreover, P doping induces a hybridized state in the bandgap, leading to an imbalanced charge distribution and a localized built-in electric field for effective separation of photogenerated charge carriers. Further construction of intimate heterojunctions between P-Zn0.3Cd0.7S and MoS2 accelerates surface redox reaction. Benefiting from the above merits, 1 % MoS2/P-Zn0.3Cd0.7S exhibits a high hydrogen production rate of 30.65 mmol·g-1·h-1 with AQE of 22.22 % under monochromatic light at 370 nm, exceeding most ZnxCd1-xS based photocatalysts reported so far. This work opens avenues to fabricate examplary photocatalysts for solar energy conversion and beyond.

2.
J Colloid Interface Sci ; 673: 826-835, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38908282

ABSTRACT

Improving the separation efficiency of carriers is an important part of enhancing photocatalytic activity. Herein, we successfully decorated metallic 1T phase tungsten disulfide (1T-WS2) on the surface of zinc indium sulfide (ZnIn2S4) and investigated the synergistic effect of 1T-WS2 on ZnIn2S4. The characterization results show that 1T-WS2 improves the light absorption capacity and utilization efficiency, increases the catalytic active site, improves the photogenerated charge separation efficiency, and optimizes the reduction potential of ZnIn2S4. Theoretical calculations show that compared with ZnIn2S4, 1T-WS2/ZnIn2S4 has a smaller adsorption Gibbs free energy of the intermediate state H*, which is conducive to the catalytic reaction. Under simulated solar irradiation, the hydrogen (H2) production rate of 1T-WS2/ZnIn2S4 with a loading of 12 wt% reaches 30.90 mmol h-1 g-1, which is 3.38 times higher than that of single ZnIn2S4 (9.13 mmol h-1 g-1). In addition, the apparent quantum efficiency of 1T-WS2/ZnIn2S4 with a loading of 12 wt% reaches 21.14 % under monochromatic light at a wavelength of λ = 370 nm. This work analyzes the light absorption and carrier separation to the catalytic site, and elucidates the mechanism for the enhancement of the photocatalytic hydrogen production performance.

3.
J Colloid Interface Sci ; 664: 848-856, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493650

ABSTRACT

In this work, we report a series of noble metal (Ag, Au, Pt, etc.) sulfides that act as co-catalysts anchoring on CdS nanorods (NRs) obtained via a cation exchange strategy to promote photocatalytic hydrogen evolution. CdS NRs are first generated via a hydrothermal routine, noble metal sulfides are then in-situ grown on CdS NRs by a cation exchange method. CdS/Ag2S, CdS/Au2S and CdS/PtS NRs show improved hydrogen production rates (2506.88, 1513.17 and 1004.54 µmol g-1h-1, respectively), approximately 18, 11 and 7 times higher than CdS NRs (138.27 µmol g-1h-1). Among CdS/noble metal sulfide NRs, CdS/Ag2S NRs present the best H2 production performance. The apparent quantum efficiency (AQE) of CdS/Ag2S NRs achieves 3.11 % at λ = 370 nm. The improved photocatalytic performance of CdS/noble metal sulfide NRs dues to the following points: i) Noble metal sulfides on CdS NRs are beneficial for elevating light-absorbing and light-utilizing capacities, contributing to generating more photoexcited charges; ii) Noble metal sulfides are in-situ grown on CdS NRs as electron acceptors by a cation exchange method, thus the photoexcited electrons generated by CdS NRs rapidly migrate to the surface of noble metal sulfides, successfully accelerating the carriers separation efficiency. This series of noble metal sulfides acting as co-catalysts anchoring on CdS NRs offer new insights into the construction principles of high-performance photocatalytic hydrogen evolution catalysts.

4.
Chemosphere ; 350: 141143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195015

ABSTRACT

Hybrid organic framework materials are a class of hierarchical porous crystalline materials that have emerged in recent years, composed of three types of porous crystal materials, namely metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs). The combination of various organic framework properties in hybrid organic frameworks generates synergistic effects, which has attracted widespread attention from researchers. The synthesis methods of hybrid organic frameworks are also an intriguing topic, enabling the formation of core-shell heterostructures through epitaxial growth, template conversion, medium growth, or direct combination. These hybrid organic framework materials have demonstrated remarkable performance in the application of photocatalytic wastewater purification and have developed various forms of applications. This article reviews the preparation principles and methods of various hybrid organic frameworks and provides a detailed overview of the research progress of photocatalytic water purification hybrid organic frameworks. Finally, the challenges and development prospects of hybrid organic framework synthesis and their application in water purification are briefly discussed.


Subject(s)
Metal-Organic Frameworks , Water Purification , Hydrogen , Porosity
5.
Nanoscale ; 15(46): 18571-18580, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37955616

ABSTRACT

Photocatalysis, as an effective advanced oxidation process, has been widely carried out in water waste treatment, especially in the degradation of organic pollutants. However, the photocatalytic process is limited by the high recombination rate of photo-generated carriers. To improve photocatalytic efficiency, piezocatalysis has attracted increasing attention, especially that using lead-free piezoelectric materials, which avoids the secondary pollution of lead toxicity in the environment. Bi-based materials have both photocatalytic activity and piezocatalytic activity, which can perfectly combine the advantages of these two catalytic processes to promote the degradation of organic pollutants. Under an external mechanical action, the Bi-based catalyst produces a polarized electric field due to the piezoelectric effect, and the photo-generated carriers can be effectively separated under electrostatic attraction, thus obtaining more efficient photocatalytic performance. However, there are still many gaps in the design, reaction mechanism, and development prospects of Bi-based piezo-photocatalysts. Therefore, to acquire a deeper understanding of the research status of Bi-based piezo-photocatalysts, we summarize the existing literature to provide effective ways to improve piezo-photocatalytic performance. Moreover, this paper points out the developmental direction of piezo-photocatalysis in the future. Last but not least, we also look forward to the prospect of piezo-photocatalysis in the degradation of organic pollutants.

6.
Chemosphere ; 339: 139673, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536536

ABSTRACT

Contaminants in water pose a significant challenge as they are harmful and difficult to treat using conventional methods. Therefore, various new methods have been proposed to degrade organic pollutants in water, among which the photo-Fenton process is considered promising. In recent years, Fe-based metal-organic frameworks (Fe-MOFs) have gained attention and found applications in different fields due to their cost-effectiveness, non-toxic nature, and unique porous structure. Many researchers have applied Fe-MOFs to the photo-Fenton process in recent years and achieved good results. This review focuses on describing different strategies for enhancing the performance of Fe-MOFs in the photo-Fenton process. Also, the mechanism of MOF in the photo-Fenton process is described in detail. Finally, prospects for the application of Fe-MOFs in photo-Fenton systems for the treatment of organic pollutants in water are presented. This study provides information and ideas for researchers to use Fe-MOFs to remove organic pollutants from water by photo-Fenton process.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Water Pollutants, Chemical , Iron/chemistry , Metal-Organic Frameworks/chemistry , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Water
7.
Chem Rec ; 23(11): e202300109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37489551

ABSTRACT

Hydrogen has enormous commercial potential as a secondary energy source because of its high calorific value, clean combustion byproducts, and multiple production methods. Electrocatalytic water splitting is a viable alternative to the conventional methane steam reforming technique, as it operates under mild conditions, produces high-quality hydrogen, and has a sustainable production process that requires less energy. Electrocatalysts composed of precious metals like Pt, Au, Ru, and Ag are commonly used in the investigation of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Nevertheless, their limited availability and expensive cost restrict practical use. In contrast, electrocatalysts that do not contain precious metals are readily available, cost-effective, environmentally friendly, and possess electrocatalytic performance equal to that of noble metals. However, considerable research effort must be devoted to create cost-effective and high-performing catalysts. This article provides a comprehensive examination of the reaction mechanism involved in electrocatalytic water splitting in both acidic and basic environments. Additionally, recent breakthroughs in catalysts for both the hydrogen evolution and oxygen evolution reactions are also discussed. The structure-activity relationship of the catalyst was deep-going discussed, together with the prospects of current obstacles and potential for electrocatalytic water splitting, aiming at provide valuable perspectives for the advancement of economical and efficient electrocatalysts on an industrial scale.

8.
Chemosphere ; 335: 139133, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290509

ABSTRACT

Sensing of cadmium (Cd) and lead (Pb) in environmental samples is crucial for identifying potential health risks associated with exposure to these heavy metals as well as understanding the extent of heavy metal contamination in different environments and its impact on the ecosystem. The present study elucidates the development of a novel electrochemical sensor that can detect Cd (II) and Pb (II) ions simultaneously. This sensor is fabricated using reduced graphene oxide (rGO) and cobalt oxide nanocrystals (Co3O4 nanocrystals/rGO). The characterization of Co3O4 nanocrystals/rGO was done by using various analytical techniques. The incorporation of cobalt oxide nanocrystals with intense absorption properties results in an amplification of the electrochemical current generated on the surface of the sensor by heavy metals. This, when coupled with the unique properties of the GO layer, enables the identification of trace levels of Cd (II) and Pb (II) in the surrounding environment. The electrochemical testing parameters were meticulously optimized to obtain high sensitivity and selectivity. The Co3O4 nanocrystals/rGO sensor exhibited exceptional performance in detecting Cd (II) and Pb (II) within a concentration range of 0.1-450 ppb. Notably, the limits of detection (LOD) for Pb (II) and Cd (II) were found to be highly impressive at 0.034 ppb and 0.062 ppb, respectively. The Co3O4 nanocrystals/rGO sensor integrated with the SWASV method displayed notable resistance to interference and exhibited consistent reproducibility and stability. Therefore, the suggested sensor has the potential to serve as a technique for detecting both ions in aqueous samples using SWASV analysis.


Subject(s)
Metals, Heavy , Nanoparticles , Cadmium , Lead , Reproducibility of Results , Ecosystem , Oxides/chemistry , Nanoparticles/chemistry
9.
Chem Rec ; 23(5): e202200309, 2023 May.
Article in English | MEDLINE | ID: mdl-36974578

ABSTRACT

Rechargeable aqueous zinc-ion batteries (ZIB) sparked a considerable surge of research attention in energy storage systems due to its environment benignity and superior electrochemical performance. Up to now, less efforts to delve into mechanisms of zinc metal anode and their electrochemical performance. Zn metal anodes sustain thorny issues with Zn dendrite growth, hydrogen evolution reaction, and Zn corrosion irreversible byproduct formation, which results in low coulomb efficiency (CE) and poor cycle ability of the battery. Herein, we reveal the fundamental understanding of the above issue, outline four step, including mass transfer, desolvation process, charge transfer and Zn cluster formation. It can be clearly seen from reported strategies to promote Zn anode stability that deals with one or more steps, thereby boosting the understanding of the issues of Zn anodes and benefiting the rational design to surmount the issue. We also sum up advanced materials and structure design such as the design of the anode surface and internal structure, electrolyte strategies, and multifunctional separators. Finally, possible tactics and future innovation direction for Zn-based batteries are proposed to achieve high performance aqueous Zinc-ion batteries.

10.
Dalton Trans ; 51(8): 3314-3322, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35133353

ABSTRACT

The core-shell structured CuO@NiCoMn-LDH electrode was synthesized by wet chemistry, calcination, and electrodeposition. The synergistic effect of CuO nanowires and NiCoMn-LDH nanosheets has a significant enhancement effect on electrode materials. At the same time, the Mn content plays a decisive role in regulating and optimizing the morphology and electrochemical performance of electrode materials. The optimized CuO@NiCoMn-LDH, a binder-free electrode, exhibits excellent electrochemical performance. It displays a high specific capacity of 2.66 mA h cm-2 (20.7 F cm-2, 336.71 mA h g-1) at 10 mA cm-2 and satisfactory cycling stability (under a current density of 30 mA cm-2, after 3000 cycles, the capacity retention rate is 94.82%). In addition, an asymmetric supercapacitor (ASC) is built using the CuO@NiCoMn-LDH electrode as the positive electrode and Fe3O4@C/CuO electrode as the negative electrode to demonstrate its practical applicability in energy storage devices. At a power density of 4.79 mW cm-2, the ASC device can achieve a maximum energy density of 2.67 mW h cm-2. Two ASC devices are used as the power source of the light emitting diode (LED), which can emit light continuously for 15 minutes, showing great potential in energy storage device applications.

11.
Chem Commun (Camb) ; 56(98): 15387-15405, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33216072

ABSTRACT

Electrocatalytic water splitting, which is driven by renewable energy input to produce oxygen, has been widely regarded as a promising strategy in the future energy portfolio. The two-dimensional structure based on CoOOH nanosheets is easy to handle in the preparation process, low in cost, and has a small overpotential during water decomposition. Therefore, CoOOH two-dimensional materials have been widely used as electrocatalysts for the oxygen evolution reaction (OER). In this paper, we summarize the application of two-dimensional CoOOH nanosheets in the field of oxygen production from electrocatalytic water splitting. First, the different preparation methods of two-dimensional CoOOH nanosheets are briefly introduced. The structure-activity relationship of the two-dimensional CoOOH catalyst was analyzed from different viewpoints, such as doping, defects, etc. Finally, different catalytic mechanisms of CoOOH-based catalysts are discussed, and studies at the density functional theory (DFT) level are also provided to support the above mechanisms. To improve the readability of this review, a concise overview at the end of each section is given to illustrate some of the characteristics and trends of the studies in the corresponding part. The opportunities and challenges of two-dimensional CoOOH as an electrocatalyst in the future are summarized in the Conclusion section. This work will provide new insights and perspectives to the readers to understand the role of CoOOH nanosheets in the OER process.

13.
RSC Adv ; 10(29): 16892-16903, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-35693915

ABSTRACT

WO3/Ag3PO4 with different weight ratios were prepared by ultrasonic assisted two-step deposition method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The photocatalytic activities of all samples were evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. WA-60 shows the highest photocatalytic activity in the WA-x series composite, while the photocatalytic activity of WAA-60 is the best among all samples. The free radical trapping experiments show that photogenerated holes (h+) are the main active species. The Ag nanoparticles produced by the decomposition of Ag3PO4 are located at the interface of Ag3PO4/WO3, which promotes the separation efficiency of photogenerated electrons and holes. To further explain the photocatalytic mechanism, electrochemical and physical tests are introduced to explore the flow of electrons inside the catalyst.

14.
Int J Nanomedicine ; 14: 457-468, 2019.
Article in English | MEDLINE | ID: mdl-30666107

ABSTRACT

BACKGROUND: Implant-related infection is a major problem postsurgery. As an alternative to a localized antibiotic release system, we used Ag to fabricate Ti-Ag alloys with nanotubular coatings (TiAg-NTs). Ag has excellent antibacterial properties, but its biological toxicity is a concern. Therefore, we performed biological experiments both in vitro and in vivo to evaluate the biocompatibility of TiAg-NTs with different concentrations of Ag (1%, 2%, and 4%). METHODS: For in vitro experiments, cytocompatibility, including cell attachment, viability, and proliferation, was tested, and genes and proteins related to osteogenic differentiation were also evaluated. For in vivo assays, the rat femoral condylar insertion model was used, and micro-computed tomography (micro-CT) and histological analysis were conducted to analyze bone formation around implants at 1, 2, and 4 weeks after surgery. RESULTS: Both in vitro and in vivo results indicate that Ti2%Ag-NT showed comparable cytocompatibility with commercially pure Ti (cp-Ti), and it could achieve good osseointegration with the surrounding bone tissue. CONCLUSION: We thus believe that Ti2%Ag-NT is a potential biomaterial for orthopedics.


Subject(s)
Alloys/pharmacology , Antineoplastic Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Nanotubes/chemistry , Osteosarcoma/drug therapy , Silver/chemistry , Titanium/chemistry , Alloys/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Cell Proliferation , Humans , Male , Osteogenesis , Osteosarcoma/pathology , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured
15.
Mater Sci Eng C Mater Biol Appl ; 92: 121-131, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30184735

ABSTRACT

In this work, Ti-Ag sintered alloys (Ti-Ag) with different Ag contents were prepared by a spark plasma sintering (SPS) technique, which is a new, efficient and convenient method of powder metallurgy. The Ti-Ag samples were then treated with a mixture of 40 wt% hydrofluoric acid (HF) and nitric acid (HNO3). The surface features, ion release, antibacterial activities and biocompatibilities of the acid-etched Ti-Ag (Ti-Ag(AE)) samples were systematically characterized. The surface characterization results revealed the formation of micropits and particles with high Ag contents. Antibacterial experiments demonstrated that the antibacterial ratios of the Ti-Ag samples increased significantly after the acid etching treatment, and the particles with high Ag contents are thought to play a key role in the antibacterial mechanism. Biocompatibility experiments indicated that the cell proliferation, cell morphology, and osteoblastic differentiation did not significantly differ between the pure titanium (cp-Ti) and Ti-Ag(AE) samples. The Ti-Ag(AE) samples with 3 wt% and 5 wt% Ag not only possessed sustained antibacterial activities for at least 30 days but also did not have impaired biocompatibility.


Subject(s)
Alloys/chemistry , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cell Line , Cell Survival/drug effects , Hydrofluoric Acid/chemistry , Materials Testing , Mice , Nitric Acid/chemistry , Plasma Gases , Silver/chemistry , Staphylococcus aureus/drug effects , Surface Properties , Titanium/chemistry
16.
J Hazard Mater ; 353: 182-189, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29674093

ABSTRACT

The heterogeneous Fenton system has become the hotspot in the decontamination field due to its effective degradation performance with a wide pH range. Based on the unstable chemical properties of pyrite, in this article, Fe2GeS4 nanoparticles with better thermodynamic stability were prepared by vacuum sintering and high energy ball milling and its potential as Fenton reagent was investigated for the first time. Three determinants of the heterogeneous Fenton system including the iron source, hydrogen peroxide, pH and the degradation mechanism were investigated. The catalyst dosage of 0.3 g/L, initial H2O2 concentration in the Fenton system of 50 m mol/L and pH of 7 were chosen as the best operational conditions. An almost complete degradation was achieved within 5 min for methylene blue and rhodamine b while 10 min for methyl orange. The total organic carbon removal efficiencies of Fe2GeS4 heterogeneous Fenton system for methylene blue, methyl orange and rhodamine b in 10 min were 56.3%, 66.2% and 74.2%, respectively. It's found that the degradation ability could be attributed to a heterogeneous catalysis occurring at the Fe2GeS4 surface together with a homogeneous catalysis in the aqueous phase by the dissolved iron ions.

17.
RSC Adv ; 8(68): 38850-38859, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-35558283

ABSTRACT

Nd2Fe14B nanoparticles were successfully prepared by using a low-energy chemical method. The microscopic characteristics and formation mechanisms of the phases were investigated at each stage during the preparation of Nd-Fe-B nanoparticles. The Nd-Fe-B intermediates, Nd-Fe-B oxides and reduced Nd-Fe-B nanoparticles were detected and analyzed by using TEM, STEM, XRD, SEM, VSM and Rietveld calculations. The results showed that the intermediate of Nd-Fe-B consisted of Fe3O4 and Nd and Fe elements surrounded by nitrile organic compounds. The Nd-Fe-B oxide was composed of NdFeO3 (48.619 wt%), NdBO3 (31.480 wt%) and α-Fe (19.901 wt%), which was formed by the reaction among Nd, Fe3O4 and B2O3. NdFeO3 and NdBO3 exhibited a perovskite-like lamellar structure, and the grain size was smaller than that of α-Fe. Nd-Fe-B particles were mainly composed of Nd2Fe14B and α-Fe phases. The small particles of NdFeO3 and NdBO3 and the interstitial position between oxide particles and α-Fe were more favorable for the formation of Nd2Fe14B particles. At the same time, the surface of α-Fe particles can also diffuse to form Nd2Fe14B nanoparticles. The coercivity of Nd-Fe-B particles was 5.79 kOe and the saturation magnetization was 63.135 emu g-1.

18.
Sci Rep ; 7(1): 13085, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026151

ABSTRACT

Dy2Cu2O5 nanoparticles with perovskite structures were synthesized via a simple solution method (SSM) and a coordination compound method (CCM) using [DyCu(3,4-pdc)2(OAc)(H2O)2]•10.5H2O (pdc = 3,4-pyridinedicarboxylic acid) as precursor. The as-prepared samples were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS) and standard Brunauer-Emmett-Teller (BET) methods. Compared to the aggregated hexahedral particles prepared by SSM, the Dy2Cu2O5 of CCM showed hollow spherical morphology composed of nanoparticles with average diameters of 100-150 nm and a larger special surface area up to 36.5 m2/g. The maximum adsorption capacity (Q m ) of CCM for malachite green (MG) determined by the adsorption isotherms with different adsorbent dosages of 0.03-0.07 g, reached 5.54 g/g at room temperature. The thermodynamic parameters of adsorption process were estimated by the fittings of the isotherms at 298, 318, and 338 K, and the kinetic parameters were obtained from the time-dependent adsorption isotherms. The results revealed that the adsorption process followed a pseudo-second-order reaction. Finally, the adsorption mechanism was studied using a competitive ion (CI) experiments, and the highly efficient selective adsorption was achieved due to strong O-Cu and O-Dy coordination bonds between Dy2Cu2O5 and MG.

19.
Int J Nanomedicine ; 11: 5743-5755, 2016.
Article in English | MEDLINE | ID: mdl-27843315

ABSTRACT

PURPOSE: To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti-Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag) were generated with nanotubular coverings (TiAg-NT). METHODS: Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus (S. aureus), as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. RESULTS: All of the TiAg-NT samples, particularly the nanotube-coated Ti-Ag alloy with 2 wt% Ag (Ti2%Ag-NT), could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its performance was satisfactory, as demonstrated by the higher cellular viability and lower cell apoptosis rate obtained with it compared with those achieved with commercial pure Ti. The Ti1%Ag-NT and Ti4%Ag-NT samples did not yield good cell viability. CONCLUSION: This study indicates that the TiAg-NT samples can prevent biofilm formation and maintain their antibacterial ability for at least 1 month. Ti2%Ag-NT exhibited better antibacterial ability and biocompatibility than commercial pure Ti, which could be attributed to the synergistic effect of the presence of Ag (2 wt%) and the morphology of the nanotubes. Ti2%Ag-NT may offer a potential implant material that is capable of preventing implant-related infection.


Subject(s)
Alloys/pharmacology , Coated Materials, Biocompatible/pharmacology , Nanotubes/chemistry , Silver/chemistry , Staphylococcus aureus/drug effects , Titanium/chemistry , Alloys/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Materials Testing , Microscopy, Electron, Scanning , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...