Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(14): 5385-5402, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577375

ABSTRACT

Understanding the mechanisms by which electrodes undergo the hydrogen evolution reaction (HER) is necessary to design better materials for aqueous energy storage and conversion. Here, we investigate the HER mechanism on tungsten oxide electrodes, which are stable in acidic electrolytes and can undergo proton-insertion coupled electron transfer concomitant with the HER. Electrochemical characterization showed that anhydrous and hydrated tungsten oxides undergo changes in HER activity coincident with changes in proton composition, with activity in the order HxWO3·H2O > HxWO3 > HxWO3·2H2O. We used operando X-ray diffraction and density functional theory to understand the structural and electronic changes in the materials at high states of proton insertion, when the oxides are most active towards the HER. H0.69WO3·H2O and H0.65WO3 have similar proton composition, structural symmetry, and electronic properties at the onset of the HER, yet exhibit different activity. We hypothesize that the electrochemically inserted protons can diffuse in hydrogen bronzes and participate in the HER. This would render the oxide volume, and not just the surface, as a proton and electron reservoir at high overpotentials. HER activity is highest in HxWO3·H2O, which optimizes both the degree of proton insertion and solid-state proton transport kinetics. Our results highlight the interplay between the HER and proton insertion-coupled electron transfer on transition metal oxides, many of which are non-blocking electrodes towards protons.

2.
JACS Au ; 2(2): 367-379, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35252987

ABSTRACT

Controlled C-O bond scission is an important step for upgrading glycerol, a major byproduct from the continuously increasing biodiesel production. Transition metal nitride catalysts have been identified as promising hydrodeoxygenation (HDO) catalysts, but fundamental understanding regarding the active sites of the catalysts and reaction mechanism remains unclear. This work demonstrates a fundamental surface science study of Mo2N and Cu/Mo2N for the selective HDO reaction of glycerol, using a combination of model surface experiments and first-principles calculations. Temperature-programmed desorption (TPD) experiments showed that clean Mo2N cleaved two or three C-O bonds of glycerol to produce allyl alcohol, propanal, and propylene. The addition of Cu to Mo2N changed the reaction pathway to one C-O bond scission to produce acetol. High-resolution electron energy loss spectroscopy (HREELS) results identified the surface intermediates, showing a facile C-H bond activation on Mo2N. Density functional theory (DFT) calculations revealed that the surface N on Mo2N interacted with the H atoms in glycerol and blocked some Mo sites to enable selective C-O bond scission. This work shows that Mo2N and Cu/Mo2N are active and selective for the controlled C-O bond scission of glycerol and in turn provides insights into the rational catalyst design for selective oxygen removal of relevant biomass-derived oxygenates.

3.
Nat Commun ; 9(1): 4612, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397199

ABSTRACT

The selective hydrodeoxygenation (HDO) reaction is desirable to convert glycerol into various value-added products by breaking different numbers of C-O bonds while maintaining C-C bonds. Here we combine experimental and density functional theory (DFT) results to reveal that the Cu modifier can significantly reduce the oxophilicity of the molybdenum carbide (Mo2C) surface and change the product distribution. The Mo2C surface is active for breaking all C-O bonds to produce propylene. As the Cu coverage increases to 0.5 monolayer (ML), the Cu/Mo2C surface shows activity towards breaking two C-O bonds and forming ally-alcohol and propanal. As the Cu coverage further increases, the Cu/Mo2C surface cleaves one C-O bond to form acetol. DFT calculations reveal that the Mo2C surface, Cu-Mo interface, and Cu surface are distinct sites for the production of propylene, ally-alcohol, and acetol, respectively. This study explores the feasibility of tuning the glycerol HDO selectivity by modifying the surface oxophilicity.

4.
J Tissue Eng Regen Med ; 11(3): 862-868, 2017 03.
Article in English | MEDLINE | ID: mdl-25627750

ABSTRACT

Many types of cells respond to applied direct current electric fields (dcEFs) by directional cell migration, a phenomenon called galvanotaxis or electrotaxis. In this study, electrotaxis was used to control cell migration. We designed a new electrotaxis incubator and chamber system to facilitate long-term (> 12 h) observation and to allow for alterations to the direction of the current. Poly(lactic-co-glycolic acid) (PLGA) was coated onto surfaces to mimic a commonly used tissue-engineering scaffolding environment. Neonatal human dermal fibroblasts (nHDFs) were grown on PLGA-coated surfaces and exposed to EFs at increasing currents in the range 0-1 V/cm. These cells migrated toward the cathode during 3 h of dcEF stimulation; however, the migration speed decreased with increasing electric fields. Cells exposed to dcEFs in the range 1-2 V/cm showed no changes to migration speed or x forward migration indices (xFMIs) and the cells continued to move toward the cathode. nHDFs showed directional migration towards the cathode in direct current (dc) EFs (1 V/cm) and they moved in the opposite direction when the polarity of the dcEF was reversed. Reorganization of the actin cytoskeleton and polarization of the Golgi apparatus were evaluated by immunostaining, which showed that the actin cytoskeleton elongated towards the cathode and the Golgi apparatus polarized in the direction of the dcEF. This study revealed that cell migration could potentially be controlled on PLGA scaffolds through electrotaxis. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Cell Movement/drug effects , Dermis/cytology , Electricity , Fibroblasts/cytology , Lactic Acid/pharmacology , Polyglycolic Acid/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Glass , Humans , Infant, Newborn , Polylactic Acid-Polyglycolic Acid Copolymer , Surface Properties
5.
Biomed Mater ; 9(2): 025002, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24487019

ABSTRACT

Many types of hemostatic agents have been studied for the effective control of bleeding. In this study, a powdery medical adhesive composed of aldehyded dextran and ε-poly (L-lysine) was used with the recombinant batroxobin. Batroxobin is a venomous component from the snake Bothrops atrox moojeni and catalyzes fibrinogen conversion to form soluble fibrin clots. This research aims to examine the performance of the batroxobin-containing adhesive for hemostasis, and evaluate its potential as a novel hemostatic adhesive. The fibrinogen conversion ability of batroxobin was evaluated by a fibrinogen clotting assay and a whole blood clotting assay. Both experiments demonstrated the effectiveness of the batroxobin-containing adhesive for blood clot formation. Animal experiments were also conducted. After a pricking wound was made in an ICR (imprinting control region) mouse liver, the adhesive and various concentrations of batroxobin were applied. The total amount of blood loss was reduced with increasing concentrations of batroxobin. For excessive bleeding conditions, the femoral artery wound model of SD (Sprague-Dawley) rats was adopted. With higher concentrations of batroxobin, hemostasis was more rapidly achieved. Histological analysis of the liver model also supports the hemostatic effects through fibrin clot formation. In conclusion, batroxobin and medical adhesive effectively facilitate blood coagulation, and could be developed for clinical use.


Subject(s)
Bandages , Batroxobin/administration & dosage , Blood Coagulation/drug effects , Hemorrhage/drug therapy , Hemostatics/administration & dosage , Adhesives , Aldehydes , Animals , Bothrops , Dextrans/chemistry , Femoral Artery/pathology , Fibrin/chemistry , Fibrinogen/chemistry , Hemostasis , Humans , Liver/metabolism , Male , Mice , Mice, Inbred ICR , Polylysine/chemistry , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry
6.
Biomater Res ; 18: 7, 2014.
Article in English | MEDLINE | ID: mdl-26331058

ABSTRACT

BACKGROUND: The initial procedure of the development of engineered tissues is cell seeding into three-dimensional polymer scaffolds. However, it is hard to make the cells invade into scaffold due to the characteristic of pore and material. Electrospun poly (L-lactic acid) scaffold and flow perfusion system were used to overcome these seeding problems. RESULTS: Before starting the experiment, we set up the parallel plate chamber system to observe endothelial cell migration under flow condition. In individual cell migration model, human umbilical endothelial cells started to migrate in the direction of flow at 8 dyne/cm(2) and we observed the cytoskeleton alignment at 8 dyne/cm(2). This study has demonstrated the possibility to evaluate and analyze cell migration using the parallel plate chamber system and we may predict in vivo cell migration under flow condition based on these results. Also the flow perfusion system was established for the effective cell seeding into at three dimensional scaffolds. Moreover, shear stress induced by flow can enhance cell migration into PLLA scaffold that is in the form of cotton. CONCLUSIONS: Result indicated that cell penetration was achieved under flow condition better and more than under static condition throughout the matrix.

7.
Biomater Res ; 18: 10, 2014.
Article in English | MEDLINE | ID: mdl-26331061

ABSTRACT

BACKGROUND: Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. RESULTS: Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. CONCLUSIONS: In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

8.
Oxid Med Cell Longev ; 2013: 827905, 2013.
Article in English | MEDLINE | ID: mdl-24307927

ABSTRACT

Epigallocatechin gallate (EGCG) is known to exhibit antioxidant, antiproliferative, and antithrombogenic effects and reduce the risk of cardiovascular diseases. Key events in the development of cardiovascular disease are hypertrophy and hyperplasia according to vascular smooth muscle cell proliferation. In this study, we investigated whether EGCG can interfere with PDGF-bb stimulated proliferation, cell cycle distribution, and the gelatinolytic activity of MMP and signal transduction pathways on RAOSMC when it was treated in two different ways-cotreatment with PDGF-bb and pretreatment of EGCG before addition of PDGF-bb. Both cotreated and pretreated EGCG significantly inhibited PDGF-bb induced proliferation, cell cycle progression of the G0/G1 phase, and the gelatinolytic activity of MMP-2/9 on RAOSMC. Also, EGCG blocked PDGF receptor-ß (PDGFR-ß) phosphorylation on PDGF-bb stimulated RAOSMC under pretreatment with cells as well as cotreatment with PDGF-bb. The downstream signal transduction pathways of PDGFR-ß, including p42/44 MAPK, p38 MAPK, and Akt phosphorylation, were also inhibited by EGCG in a pattern similar to PDGFR-ß phosphorylation. These findings suggest that EGCG can inhibit PDGF-bb stimulated mitogenesis by indirectly and directly interrupting PDGF-bb signals and blocking the signaling pathway via PDGFR-ß phosphorylation. Furthermore, EGCG may be used for treatment and prevention of cardiovascular disease through blocking of PDGF-bb signaling.


Subject(s)
Catechin/analogs & derivatives , Mitogens/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Proto-Oncogene Proteins c-sis/pharmacology , Signal Transduction/drug effects , Animals , Aorta/cytology , Becaplermin , Catechin/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Humans , Intracellular Space/metabolism , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Protective Agents/pharmacology , Rats
9.
Phytomedicine ; 19(13): 1223-7, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22939261

ABSTRACT

Wound healing proceeds through a complex collaborative process involving many types of cells. Keratinocytes and fibroblasts of epidermal and dermal layers of the skin play prominent roles in this process. Asiaticoside, an active component of Centella asiatica, is known for beneficial effects on keloid and hypertrophic scar. However, the effects of this compound on normal human skin cells are not well known. Using in vitro systems, we observed the effects of asiaticoside on normal human skin cell behaviors related to healing. In a wound closure seeding model, asiaticoside increased migration rates of skin cells. By observing the numbers of cells attached and the area occupied by the cells, we concluded that asiaticoside also enhanced the initial skin cell adhesion. In cell proliferation assays, asiaticoside induced an increase in the number of normal human dermal fibroblasts. In conclusion, asiaticoside promotes skin cell behaviors involved in wound healing; and as a bioactive component of an artificial skin, may have therapeutic value.


Subject(s)
Fibroblasts/drug effects , Phytotherapy , Triterpenes/pharmacology , Wound Healing/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Centella , Drug Evaluation, Preclinical , Humans , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...