Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794076

ABSTRACT

Object detection is one of the core technologies for autonomous driving. Current road object detection mainly relies on visible light, which is prone to missed detections and false alarms in rainy, night-time, and foggy scenes. Multispectral object detection based on the fusion of RGB and infrared images can effectively address the challenges of complex and changing road scenes, improving the detection performance of current algorithms in complex scenarios. However, previous multispectral detection algorithms suffer from issues such as poor fusion of dual-mode information, poor detection performance for multi-scale objects, and inadequate utilization of semantic information. To address these challenges and enhance the detection performance in complex road scenes, this paper proposes a novel multispectral object detection algorithm called MRD-YOLO. In MRD-YOLO, we utilize interaction-based feature extraction to effectively fuse information and introduce the BIC-Fusion module with attention guidance to fuse different modal information. We also incorporate the SAConv module to improve the model's detection performance for multi-scale objects and utilize the AIFI structure to enhance the utilization of semantic information. Finally, we conduct experiments on two major public datasets, FLIR_Aligned and M3FD. The experimental results demonstrate that compared to other algorithms, the proposed algorithm achieves superior detection performance in complex road scenes.

2.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571688

ABSTRACT

Due to the challenges of small detection targets, dense target distribution, and complex backgrounds in aerial images, existing object detection algorithms perform poorly in aerial image detection tasks. To address these issues, this paper proposes an improved algorithm called YOLOv5s-DSD based on YOLOv5s. Specifically, the SPDA-C3 structure is proposed and used to reduce information loss while focusing on useful features, effectively tackling the challenges of small detection targets and complex backgrounds. The novel decoupled head structure, Res-DHead, is introduced, along with an additional small object detection head, further improving the network's performance in detecting small objects. The original NMS is replaced by Soft-NMS-CIOU to address the issue of neighboring box suppression caused by dense object distribution. Finally, extensive ablation experiments and comparative tests are conducted on the VisDrone2019 dataset, and the results demonstrate that YOLOv5s-DSD outperforms current state-of-the-art object detection models in aerial image detection tasks. The proposed improved algorithm achieves a significant improvement compared with the original algorithm, with an increase of 17.4% in mAP@0.5 and 16.4% in mAP@0.5:0.95, validating the superiority of the proposed improvements.

SELECTION OF CITATIONS
SEARCH DETAIL
...