Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(39): eadi5696, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37756401

ABSTRACT

The poor durability, attributed to catalyst corrosion during start-up/shutdown (SU/SD), is a major obstacle to the commercialization of fuel cell electric vehicles (FCEVs). We recently achieved durability enhancement under SU/SD conditions by implementing a metal-insulator transition (MIT) using proton intercalation/deintercalation in WO3. However, such oxide-supported catalysts were unsuitable for direct application to the mass production stage of membrane electrode assembly (MEA) process due to their physical and chemical properties. Here, we report a unique approach that achieves the same durability enhancement in SU/SD situations while being directly applicable to the conventional MEA fabrication process. We coated WO3 on the bipolar plate, gas diffusion layer, and MEA to investigate whether the MIT phenomenon was realized. The WO3-coated MEA demonstrated 94% performance retention during SU/SD, the highest level to our knowledge. It can directly contribute to enhancing the durability of commercial FCEVs and be immediately applied to the MEA mass production process.

SELECTION OF CITATIONS
SEARCH DETAIL
...