Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroimaging ; 1: 1012639, 2022.
Article in English | MEDLINE | ID: mdl-37555149

ABSTRACT

Contrast and texture modifications applied during training or test-time have recently shown promising results to enhance the generalization performance of deep learning segmentation methods in medical image analysis. However, a deeper understanding of this phenomenon has not been investigated. In this study, we investigated this phenomenon using a controlled experimental setting, using datasets from the Human Connectome Project and a large set of simulated MR protocols, in order to mitigate data confounders and investigate possible explanations as to why model performance changes when applying different levels of contrast and texture-based modifications. Our experiments confirm previous findings regarding the improved performance of models subjected to contrast and texture modifications employed during training and/or testing time, but further show the interplay when these operations are combined, as well as the regimes of model improvement/worsening across scanning parameters. Furthermore, our findings demonstrate a spatial attention shift phenomenon of trained models, occurring for different levels of model performance, and varying in relation to the type of applied image modification.

2.
Med Image Anal ; 64: 101713, 2020 08.
Article in English | MEDLINE | ID: mdl-32492582

ABSTRACT

Unsupervised lesion detection is a challenging problem that requires accurately estimating normative distributions of healthy anatomy and detecting lesions as outliers without training examples. Recently, this problem has received increased attention from the research community following the advances in unsupervised learning with deep learning. Such advances allow the estimation of high-dimensional distributions, such as normative distributions, with higher accuracy than previous methods. The main approach of the recently proposed methods is to learn a latent-variable model parameterized with networks to approximate the normative distribution using example images showing healthy anatomy, perform prior-projection, i.e. reconstruct the image with lesions using the latent-variable model, and determine lesions based on the differences between the reconstructed and original images. While being promising, the prior-projection step often leads to a large number of false positives. In this work, we approach unsupervised lesion detection as an image restoration problem and propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation. The probabilistic model punishes large deviations between restored and original images, reducing false positives in pixel-wise detections. Experiments with gliomas and stroke lesions in brain MRI using publicly available datasets show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin, +0.13 (AUC), for both glioma and stroke detection. Extensive model analysis confirms the effectiveness of MAP-based image restoration.


Subject(s)
Magnetic Resonance Imaging , Stroke , Humans , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...