Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
ACS Sens ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783424

ABSTRACT

Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.

2.
ACS Appl Mater Interfaces ; 16(19): 25148-25159, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695364

ABSTRACT

Green electromagnetic interference (EMI) shielding materials not only require high shielding effectiveness (SE) and low reflection but also need to be recyclable after damage; however, it is challenging to strike a balance in practice. Here, a polyacrylamide (PAM) composite composed of numerous chemically cross-linked PAM@carbon nanotube (cPAM@CNT) core-shell particles featuring rich wrinkled microstructures was prepared using an adsorption-drying-shrinking strategy. The wrinkled microstructures enable the incident electromagnetic waves (EMWs) to undergo attenuation within the composites, achieving an average EMI SE of 67.5 dB in the X band. Due to the hygroscopicity of hydrophobically associated PAM (hPAM, an adhesive for cPAM@CNTs core-shell particles), the average EMI SE of the composites further increased to 83.2 dB after exposure to 91% relative humidity for 24 h, with only a 2.7 dB low reflection. Additionally, the composites also demonstrated excellent Joule heating, photothermal performance, and recyclability, which exhibit substantial promise for advanced EMI shielding applications.

3.
Talanta ; 273: 125843, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38492285

ABSTRACT

Ligand-protected gold nanoclusters (AuNCs) have become promising nanomaterials in fluorescence (FL) methods for mercury ions (Hg2+) monitoring, but low FL efficiency hinders their widespread application. Herein, AuNCs/cerium-based metal-organic frameworks (AuNCs/Ce-MOFs) were prepared by loading 6-aza-2-thiothymine-protected AuNCs (ATT-AuNCs) with aggregation-induced emission (AIE) effect on the surface of Ce-MOFs by electrostatic attraction. This strategy improved the FL intensity of AuNCs through two aspects: (i) the AIE effect of ATT-AuNCs and (ii) the confinement effect of Ce-MOFs, which improved the restriction of intramolecular motion (RIM) of ATT-AuNCs. In addition, Ce-MOFs could adsorb and aggregate Hg2+ during detection, which might increase the local concentration. Therefore, based on the high FL signal of AuNCs/Ce-MOFs and enriched Hg2+, sensitive detection of Hg2+ could be achieved. More importantly, the strong specific recognition between AuNCs and Hg2+ could guarantee selectivity. The developed FL sensor exhibited superior detection performances with a wide linear range of 0.2-500 ng mL-1 and a low detection limit of 0.067 ng mL-1. Furthermore, the FL sensor used for sensitive and selective detection of Hg2+ in real samples, and the results agreed well with the standard method. In summary, this work proposed an effective and generalized strategy for improving the FL efficiency of AuNCs, which would greatly facilitate their application in pollutant monitoring.

4.
Biosens Bioelectron ; 251: 116121, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38373373

ABSTRACT

Bis(2-ethylhexyl)phthalate (DEHP), an endocrine disruptor, shows carcinogenic, teratogenic, mutagenic and estrogenic effects. It is easy to release from plastic materials and migrate to soil environment, causing serious pollution and posing a great threat to human health. In our work, a photoelectrochemical (PEC) sensing platform for DEHP detection was constructed using BiOI/ZnO nanoarrays (NRs) as the transducer species and the DEHP aptamers as the biological recognition elements. ZnO NRs with three-dimensional and large diameter area were prepared by hydrothermal method to increase the light absorption capacity. Coupling BiOI in a narrow band gap with ZnO NRs strengthened visible-light absorption, while promoting charge carrier separation and transportation. This was attributed to the generation of an internal electric field between BiOI and ZnO NRs, exhibiting obvious photocurrent response. The as-developed PEC sensing platform demonstrated great sensing performance for detection of DEHP. Furthermore, the photocurrent varied and the logarithm of DEHP concentration showed a linear relationship from 1.0 × 10-11 to 5.0 × 10-7 mol/L, and the limit of detection was estimated to be 3.8 × 10-12 mol/L. In the meantime, while evaluating its usage in real soil samples, satisfying outcomes were realized. Thus, the as-proposed PEC sensing platform provided a potential device to monitor DEHP in the environment.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Diethylhexyl Phthalate , Zinc Oxide , Humans , Biosensing Techniques/methods , Soil
5.
Anal Chim Acta ; 1293: 342269, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38331550

ABSTRACT

BACKGROUND: Tetracycline (TC), a cost-effective broad-spectrum antibacterial drug, has been excessively utilized in the livestock and poultry industry, leading to a serious overabundance of TC in livestock wastewater. However, conventional analytical methods such as liquid chromatography and gas chromatography face challenges in achieving sensitive detection of trace amounts of TC in complex substrates. Therefore, it is imperative to develop a highly sensitive and anti-interference analytical method for the detection of tetracycline in livestock wastewater. RESULTS: A porphyrin-based MOF (PCN-224)-confined carbon dots (CDs) material (CDs@PCN-224) was synthesized by a "bottle-around-ship" strategy. The reduced carrier migration distance is conducive to the separation of electron-hole pairs and enhanced the photocurrent signal due to the tight coupling of CDs and PCN-224. Further, molecularly imprinted polymer (MIP) was synthesized by rapid in-situ UV-polymerization and employed as a recognition element. The specific recognition of the target by imprinted cavities blocks electron transfer, resulting in a "turn off" response signal, thus realizing the selective detection of TC. Under optimal conditions, the constructed MIP-PEC cathodic sensor detected 1.00 × 10-12 M to 1.00 × 10-7 M of TC sensitively, with a limit of detection of 3.72 × 10-13 M. In addition, the proposed MIP-PEC sensor demonstrated good TC detection performance in actual livestock wastewater. SIGNIFICANCE: The strategy based on MOF pore-confined quantum dots can effectively enhance the photocurrent response of the photosensitive substrate. Simultaneously, the MIP constructed by in-situ rapid UV-polymerization showed excellent anti-interference and reusable properties. This work provides a promising MIP-PEC cathodic sensing method for the rapid and sensitive detection of antibiotics in complex-matrix environmental samples.


Subject(s)
Metal-Organic Frameworks , Molecular Imprinting , Quantum Dots , Quantum Dots/chemistry , Wastewater , Molecular Imprinting/methods , Limit of Detection , Tetracycline/analysis , Anti-Bacterial Agents , Carbon/chemistry
6.
RSC Adv ; 14(9): 6298-6309, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38380232

ABSTRACT

Using activated-carbon-based electrodes derived from waste biomass in super-capacitor energy technologies is an essential future strategy to achieve sustainable energy and environmental protection. Biomass feed-stocks such as bamboo and straw have been used to prepare activated carbon-based electrodes. This experiment used peanut shells (waste biomass) as carbon precursors. Peanut shell-activated biochar materials were prepared using KOH activation and heat treatment, and SnO2@KBC-CNTs, a composite electrode material of biochar loaded with tin oxide. It was produced through hydrothermal synthesis, utilizing SnCl4-5H2O as the tin precursor. The application of KOH activators during pyrolysis markedly enhanced the porosity and specific surface area of the resultant activated biochar, due to effective dispersion and degradation of pyrolytic products. Characterized by a micro-mesoporous structure, the composite's pores boasted a specific surface area of 158.69 m2 g-1. When tested at a density of current of 0.5 A g-1, the specific capacitance of SnO2@KBC-CNTs reached 198.62 F g-1, nearly doubling the performance of the KBC electrode material alone. Moreover, the composite demonstrated a low ion transfer resistance of 0.71 Ω during charge-discharge cycles.

7.
Food Chem ; 446: 138817, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38401299

ABSTRACT

Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (Fe3O4@PEI/AuMBA@AgMBA) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.1-10 µg/kg and 4-400 µg/kg, respectively. Moreover, the test results for two mycotoxins in contaminated corn samples employing the suggested SERS-LFIA was in line with those of the HPLC technique. In view of its satisfactory sensitivity, accuracy, precision and short testing time (20 min), the developed system has a promising application prospect in the on-site simultaneous detection of AFB1 and ZEN.


Subject(s)
Mycotoxins , Zearalenone , Zearalenone/analysis , Aflatoxin B1/analysis , Mycotoxins/analysis , Magnetics , Zea mays , Magnetic Phenomena , Limit of Detection
8.
Inorg Chem ; 63(4): 2224-2233, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38214448

ABSTRACT

Bifunctional materials have attracted ongoing interest in the field of detection and removal of contaminants because of their integration of two functions, but they exhibit commonly exceptional performance in only one of these two aspects. The interaction between the two functional units of the bifunctional materials may compromise their sensing and adsorption abilities. Guided by the concept of domain building blocks (DBBs), a hierarchical metal-organic framework (MOF)-on-MOF hybrid was designed by growing gold nanoclusters (AuNCs)-embedded zeolitic imidazolate framework 8 (AuNCs/ZIF-8) on the surface of Zr-MOF (UiO-66-NH2) for the simultaneous detection and removal of Hg2+. In the hybrid, the amino groups (-NH2) and AuNCs─which were the adsorption groups and sensing units, respectively, were isolated from each other. Specifically, the adsorption groups (-NH2) were assembled in the inner UiO-66-NH2 layer, while the sensing units (AuNCs) were confined in the outer ZIF-8 layer. This hierarchical structure not only spatially hindered the electron transfer between these two units but also triggered the aggregation-induced emission of AuNCs because of the confinement of ZIF-8 on the AuNCs, thus changing the fluorescence of AuNCs from quenching to enhancement. The newly prepared UiO-66-NH2@AuNCs/ZIF-8 hybrid, as expected, showed an ultralow detection limit (0.42 ppb) and a high adsorption capacity (129.9 mg·g-1) for Hg2+. Overall, this work provides a feasible approach to improve the integrated performance of MOF-based composites based on DBBs.

9.
Anal Chem ; 96(6): 2582-2589, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38294965

ABSTRACT

The Janus interface, comprising multiple functional heterointerfaces with contrasting functionalities within a single interface, has recently garnered widespread research interest. Herein, a Janus biosensing interface is obtained via wavelength-resolved laser illumination. Deoxyribonucleic acid bridges the electrochemical probe of methylene blue (MB) and plasmonic gold nanoparticles (AuNPs), achieving a sensitive detection performance. MB shows differential electrochemical signals under front (I532front) and back (I650back) laser illumination at 532 and 650 nm, respectively, owing to the selective wavelength-resolved effect. Thus, the presence of a wavelength-resolved laser enabled the design of a biosensing interface with Janus properties. The change in the distance between MB and AuNPs induced by aflatoxin B1 (AFB1) indicates that a sensitive response of the Janus biosensing interface can be achieved. A ratiometric strategy is introduced to describe the electrochemical signals of the I532front and I650back for improved robustness. The obtained linear range is 0.0005-50 ng mL-1, with a detection limit of 0.175 pg mL-1. Our study demonstrated that the wavelength-resolved Janus interface enables an electrochemical biosensor with excellent sensitivity. This finding provides an efficient approach for improving biosensor performance.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Electrochemical Techniques , Metal Nanoparticles/chemistry , Light , Aflatoxin B1/analysis , Methylene Blue/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry
10.
Mikrochim Acta ; 191(2): 108, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38244133

ABSTRACT

Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)-loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid-liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions. Benefiting from the uniform pore size, Ni-MOF acted as reaction platform to anchor the photosensitive molecule MB. The electron donor, ascorbic acid (AA), was produced by alkaline phosphatase (ALP) loaded on DNA strand catalyzing ascorbic acid phosphate. The generated AA was absorbed by Ni-MOF/MB, thereby effectively improving the utilization of AA and avoiding the external environment interferences to enlarge the photocurrent of MB. For analysis, ALP-labeled aptamer can specifically recognize MC-LR by forming a complex to strip from aptasensor, thus leading to a  decreased photocurrent. The developed PEC aptasensor offered a linear range of 10 fM-100 pM with a detection limit of 6 fM. It was successfully employed for detecting MC-LR in farm water and fish meat, and the results were validated by ultrahigh-performance liquid chromatography-mass spectrometry. This method presents a new idea of MOF-limited domain for PEC aptasensing.


Subject(s)
Aptamers, Nucleotide , Marine Toxins , Microcystins , Nanocomposites , Animals , Methylene Blue/chemistry , Electrochemical Techniques , Aptamers, Nucleotide/chemistry , Ascorbic Acid
11.
Anal Chim Acta ; 1285: 342030, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38057051

ABSTRACT

BACKGROUND: As one of the most potent environmental estrogens, 17ß-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application. It is clear that there is an urgent need to establish simple, sensitive and accurate methods for the determination of E2. RESULTS: A split aptamer-based sandwich-type ratiometric biosensor based on split aptamer was developed by coupling photoelectrochemical and electrochemical assays for E2 detection. For analysis, the two fragments of split aptamer recognized E2 by forming sandwich structure, which triggered hybridization chain reaction (HCR) to produce double-stranded DNA (dsDNA) with CdTe quantum dots (QDs) labeled hairpin DNA. The resultant dsDNA can further absorb methylene blue (MB) to sensitize CdTe QDs for an enlarged photocurrent (IPEC) and output a redox current of IMB, and both of them acted as response signals for detection; [Fe(CN)6]3-/4- probe produced redox current of I[Fe(CN)6]3-/4- as reference signal. Using IMB/I[Fe(CN)6]3-/4- and IPEC/I[Fe(CN)6]3-/4- as yardsticks, the developed split aptamer-based sandwich-type ratiometric biosensor provides two linear ranges of 0.1-5000 pg mL-1 for IMB/I[Fe(CN)6]3-/4- and 0.1-10000 pg mL-1 for IPEC/I[Fe(CN)6]3-/4- with detection limits of 0.06 pg mL-1 and 0.02 pg mL-1, respectively. SIGNIFICANCE: These results of the biosensor are benefiting from the coupling of photoelectrochemical (PEC) and electrochemical (EC) assays as well as the unique cooperative recognition mechanism of split aptamer. This method not only enabled the biosensor to be successfully applied to the determination of E2 in lake water, but also broadens the prospects for the realization of sensitive and accurate detection of E2.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cadmium Compounds , Quantum Dots , Humans , Cadmium Compounds/chemistry , Quantum Dots/chemistry , Tellurium/chemistry , Biosensing Techniques/methods , DNA , Aptamers, Nucleotide/chemistry , Estradiol/analysis , Water , Electrochemical Techniques/methods , Limit of Detection , Gold/chemistry
12.
Chem Commun (Camb) ; 60(1): 110-113, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38037713

ABSTRACT

Here, we develop an all-in-one strategy for efficient assembly of an electrochemical aptasensor. A multifunctional structure based on a tetrahedral DNA nanostructure (TDN) was synthesized via a one-step annealing process, providing DNA fixation, target recognition, signal amplification and space regulation. Based on the integration of this multifunctional structure, the sensing interface was assembled in one step. A ratiometric aptasensor was constructed by anchoring methylene blue (MB) to the TDN and ferrocene (Fc) on the cDNA. Using the ratio of the currents obtained from Fc and MB as a measure, the developed aptasensor shows excellent analytical performance for fumonisin B1 detection. This strategy is universal and could simplify the fabrication of aptasensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nanostructures , Electrochemical Techniques , Aptamers, Nucleotide/chemistry , Limit of Detection , Gold/chemistry , DNA/chemistry , Methylene Blue
13.
Luminescence ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38148625

ABSTRACT

It is of great significance to develop an effective method for methyl parathion (MP) detection. Herein, a novel nitrogen-doped titanium carbide quantum dots (N-Ti3 C2 QDs) was prepared and used to construct a simple and sensitive fluorescence sensing platform of MP by making use of inner filter effect (IFE). The prepared N-Ti3 C2 QDs can exhibit strong blue fluorescence at 434 nm. Meanwhile, MP could hydrolyze to produce p-nitrophenol (p-NP) under alkaline conditions, which showed a characteristic ultraviolet-visible (UV-visible) absorption peak at 405 nm, resulting in the fluorescence of N-Ti3 C2 QDs is effectively quenched by p-NP. In addition, the investigation of time-resolved fluorescence decays indicated that the corresponding quenching mechanism of p-NP on N-Ti3 C2 QDs is due to the IFE. After optimizing the conditions, the as-developed fluorescence sensing platform displayed wide detection range (0.1-30 µg mL-1 ) and low detection limit (0.036 µg mL-1 ) for MP, and it was also successfully applied for MP analysis in real water samples, thus it is expected that this simple, sensitive and enzyme-free sensing platform shows great applications.

14.
Anal Chem ; 95(46): 17108-17116, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37948569

ABSTRACT

Pursuing a more efficient signal amplification strategy is highly demanded for improving the performance of the promising cathodic photoelectrochemical (PEC) sensors. In this work, we present an extremely effective dual signal amplification strategy by the integration of a Z-scheme nanohybrids-based photocathode with the effective signal modulation of an organic photoelectrochemical transistor (OPECT) device. Specifically, photocathodic gate material of CdTe-BiOBr nanohybrids with a Z-scheme electron-transfer route was designed and synthesized for preliminary improvement of the activity of the photogate; afterward, signal modulation of the OPECT system by the photocathodic gate of CdTe-BiOBr was then accomplished for further signal amplification by 2 orders of magnitude. As a result, the output PEC signal of CdTe-BiOBr was enhanced by 17.5-fold as compared to BiOBr, and the channel current (IDS) of the OPECT device was 117-fold magnified than its gate current (IG) response. Exemplified by tetracycline (TC) as a model target and aptamer as the specific recognition element, a versatile cathodic aptasensing platform was constructed based on the proposed OPECT device. The introduced OPECT aptasensor merits advantages, including a good linear range (1.0 × 10-12 to 1.0 × 10-6 M), a low limit of detection (4.2 × 10-13 M), and superior sensitivity than the traditional PEC methods for TC detection, which represents a universal protocol for developing the innovative photocathodic OPECT sensing platform toward accurate analysis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cadmium Compounds , Quantum Dots , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Tellurium , Tetracycline/analysis , Anti-Bacterial Agents/analysis
15.
Anal Chem ; 95(49): 18224-18232, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38013427

ABSTRACT

Reversible electrochromic supercapacitors (ESCs) have attracted considerable interest as visual display screens. The use of ESCs in combination with a photoelectrochemical (PEC) biosensor promises to improve the detection efficiency. Herein, a visual PEC biosensor is developed by introducing a circuit module between a PEC-sensing platform (PSP) and a reversible ESC for Cry1Ab protein detection. In PSP, a type II MgTi2O5/CdSe heterojunction effectively drives charge separation by their cross-matched band gap structures, generating an amplified photocurrent. Next, the circuit module is designed to connect the PSP and ESC, realizing the signal conversion from photocurrent to voltage. ESC, as a visual display screen, produces reversible color changes with different voltages. As the concentration of Cry1Ab increases, the photocurrent decreases due to the specific binding between the aptamer and Cry1Ab in PSP, while the color of the reversible ESC changes from green to blue. To improve the integrity of the device, a portable PEC biosensor is further constructed via three-dimensional printing for dual-modal Cry1Ab protein detection, thus collecting both PEC and visual signals. The linear ranges are 0.3-3000 ng mL-1 for PEC mode and 1-1000 ng mL-1 for visual mode. This work presents a portable, efficient, sensitive, and visualized detection system, providing an important reference for practical visualization applications.


Subject(s)
Biosensing Techniques , Cadmium Compounds , Quantum Dots , Selenium Compounds , Cadmium Compounds/chemistry , Electrochemical Techniques , Selenium Compounds/chemistry , Quantum Dots/chemistry , Biosensing Techniques/methods , Limit of Detection
16.
J Agric Food Chem ; 71(40): 14806-14813, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37751371

ABSTRACT

Aflatoxin B1 (AFB1) contamination has received considerable attention for the serious harm it causes and its wide distribution. Hence, its efficient monitoring is of great importance. Herein, a space-confined electrochemical aptasensor for AFB1 detection is developed using a conductive hydrogel. Plasmonic gold nanoparticles (AuNPs) and methylene blue-embedded double-stranded DNA (MB-dsDNA) were integrated into the conductive Au-hydrogel by ultraviolet (UV) polymerization. Specific recognition of AFB1 by the aptamer released MB from MB-dsDNA in the matrix. The free DNA migrated to the outer layer due to electrostatic repulsion during the Au-hydrogel formation. The electrochemical aptasensor based on this Au-hydrogel offered a twofold enlarged oxidation current of MB (IMB) compared with that recorded in the homogeneous solution for AFB1 detection. Upon light illumination, this IMB was further enlarged by the local surface plasmon resonance (LSPR) of the AuNPs. Ultimately, the Au-hydrogel-based electrochemical aptasensor provided a detection limit of 0.0008 ng mL-1 and a linear range of 0.001-1000 ng mL-1 under illumination for AFB1 detection. The Au-hydrogel allowed for space-confined aptasensing, favorable conductivity, and LSPR enhancement for better sensitivity. It significantly enhanced the applicability of the electrochemical aptasensor by avoiding complicated electrode fabrication and signal loss in a bulk homogeneous solution.

17.
Biosensors (Basel) ; 13(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37622893

ABSTRACT

Diuron (DU) abuse in weed removal and shipping pollution prevention always leads to pesticide residues and poses a risk to human health. In the current research, an innovative electrochemical sensor for DU detection was created using a glassy carbon electrode (GCE) that had been modified with chitosan-encapsulated multi-walled carbon nanotubes (MWCNTs-CS) combined with nitrogen-doped graphene quantum dots (NGQDs). The NGQDs were prepared by high-temperature pyrolysis, and the MWCNTs-CS@NGQDs composite was further prepared by ultrasonic assembly. TEM, UV-Vis, and zeta potential tests were performed to investigate the morphology and properties of MWCNTs-CS@NGQDs. CV and EIS measurements revealed that the assembly of MWCNTs and CS improved the electron transfer ability and effective active area of MWCNTs. Moreover, the introduction of NGQDs further enhanced the detection sensitivity of the designed sensor. The MWCNTs-CS@NGQDs/GCE electrochemical sensor exhibited a wide linear range (0.08~12 µg mL-1), a low limit of detection (0.04 µg mL-1), and high sensitivity (31.62 µA (µg mL-1)-1 cm-2) for DU detection. Furthermore, the sensor demonstrated good anti-interference performance, reproducibility, and stability. This approach has been effectively employed to determine DU in actual samples, with recovery ranges of 99.4~104% in river water and 90.0~94.6% in soil. The developed electrochemical sensor is a useful tool to detect DU, which is expected to provide a convenient and easy analytical technique for the determination of various bioactive species.


Subject(s)
Graphite , Herbicides , Nanotubes, Carbon , Quantum Dots , Humans , Diuron , Reproducibility of Results , Electrodes , Nitrogen
18.
Biosens Bioelectron ; 239: 115610, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37625203

ABSTRACT

The development of accurate and reliable sensor for on-site detection of microcystin-LR (MC-LR), one of hazardous environmental pollutants, is highly required. Herein, a laser induced graphene (LIG)-based electrochemical aptasensor for sensitive on-site detection of MC-LR was reported. LIG electrode, the substrate of aptasensor, was prepared via thermal transfer with ethylene-vinyl acetate copolymer, and LIG acted as quasi-reference electrode to replace conventional Ag/AgCl electrode for better operability and robustness. LIG electrode provided large surface area to assemble tetrahedral DNA to absorb methylene blue (MB) for the signal amplification. For detection, the specific recognition of MC-LR with aptamer led to the stripping of tetrahedral DNA complex and further the decreased redox current of MB (IMB). Consequently, the fabricated aptasensor offered high analytical performance for MC-LR detection with a linear range of 1 × 10-2-1 × 105 pM and a detection limit of 3 × 10-3 pM, which was successfully used for water sample analysis with comparable reliability and accuracy of standard method. Furthermore, a portable detection platform by coupling of LIG-based electrochemical aptasensor with electrochemical workstation was constructed for on-site detection of MC-LR. This work offers a novel method for the on-site monitoring of MC-LR, which promotes the investigation of LIG-based electrochemical biosensing in the field of environmental analysis.


Subject(s)
Biosensing Techniques , Graphite , Reproducibility of Results , DNA , Lasers , Methylene Blue
19.
Sci Total Environ ; 900: 166407, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37597549

ABSTRACT

Aptamers with strong affinity to heavy metal ions (HMIs) allow fabrication of electrochemical sensors with high selectivity and sensitivity, while controllable regulation of aptamer-HMI recognition at the sensing interface, which is vital for better analytical performance, remains challenging. Here, an electric field-based strategy for engineering an aptasensing interface was proposed to realize the specific preconcentration and accurate detection of mercury (Hg2+) and lead (Pb2+) ions with a ratiometric electrochemical sensor. The working principle is to apply an electric field to drive HMIs to approach the aptamer and retain the orientation of the DNA structure. Anthraquinone-2-carboxylic acid (AQ)-labeled complementary DNA was designed to simultaneously bind a ferrocene (Fc)-labeled aptamer for Hg2+ and a methylene blue (MB)-labeled aptamer for Pb2+, and the sensing interface was fabricated with this presynthesized DNA structure. For preconcentration, an electric field of 3.0 V pushed HMIs to approach the aptamer and retained the orientation of DNA to favor the following recognition; for detection, the oriented DNA in 2.5 V electric field offered a stable current of AQ as a reference. In this way, currents of AQ, Fc and MB were used to produce ratiometric signals of IAQ/IFc and IAQ/IMB for Hg2+ and Pb2+, respectively. Such a strategy allowed the simultaneous detection of Hg2+ and Pb2+ within 30 min with detection limits of 0.69 pM and 0.093 pM, respectively. The aptasensor was applied for soil, water, and crayfish analysis in paddy fields. The electric field-enabled strategy offers a new way to fabricate high-performance electrochemical aptasensor for HMIs detection.


Subject(s)
Mercury , Animals , Lead , Astacoidea , Ions , Methylene Blue
20.
Chem Commun (Camb) ; 59(63): 9622-9625, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37464891

ABSTRACT

A photo-enhanced electrochemical (PEEC) and colorimetric (CM) dual-modal aptasensor was developed with rGO-AuNP Schottky contact for AFB1 monitoring. The PEEC mode allowed the ultrasensitive quantitation based on the photo-enhanced electroactivity mechanism, while the CM mode offered a rapid threshold-level qualitative assay with a portable colorimeter.

SELECTION OF CITATIONS
SEARCH DETAIL
...