Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 836
Filter
1.
Angew Chem Int Ed Engl ; : e202317648, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837493

ABSTRACT

Molecular sieving is an ideal separation mechanism, but controlling pore size, restricting framework flexibility, and avoiding strong adsorption are all very challenging. Here, we report a flexible adsorbent showing molecular sieving at ambient temperature and high pressure, even under high humidity. While typical guest-induced transformations are observed, a high transition pressure of 16.6 atm is observed for C2H4 at 298 K because of very weak C2H4 adsorption (~16 kJ mol-1). Also, C2H6 is completely excluded below the pore-opening pressure of 7.7 atm, giving single-component selectivity of ca. 300. Quantitative high-pressure column breakthrough experiments using 1:1 C2H4/C2H6 mixture at 10 atm as input confirms molecular sieving with C2H4 adsorption of 0.73 mmol g-1 or 32 cm3(STP) cm-3 and negligible C2H6 adsorption of 0.001(2) mmol g-1, and the adsorbent can be completely regenerated by inert gas purging. Furthermore, it is highly hydrophobic with negligible water adsorption, and the C2H4/C2H6 separation performance is unaffected at high humidity.

2.
Front Oncol ; 14: 1364627, 2024.
Article in English | MEDLINE | ID: mdl-38854732

ABSTRACT

Purpose: Bulky tumor remains as a challenge to surgery, chemotherapy and conventional radiation therapy. Hence, in efforts to overcome this challenge, we designed a novel therapeutic paradigm via strategy of Stereotactic Central/Core Ablative Radiation Therapy (SCART).), which is based on the principles of SBRT (stereotactic body radiation therapy and spatially fractionated radiation therapy (SFRT). We intend to safely deliver an ablative dose to the core of the tumor and with a low dose at tumor edge. The purpose of the phase 1 study was to determine dose-limiting toxicities (DLT)s and the Maximum Tolerated Dose (MTD) of SCART. Methods and materials: We defined a SCART-plan volume inside the tumor, which is proportional to the dimension of tumor. VMAT/Cyberknife technique was adopted. In the current clinical trial; Patients with biopsy proven recurrent or metastatic bulky cancers were enrolled. The five dose levels were 15 Gy X1, 15Gy X3, 18GyX3, 21GyX3 and 24GyX3, while keeping the whole tumor GTV's border dose at 5Gy each fraction. There was no restriction on concurrent systemic chemotherapy agents. Results: 21 patients were enrolled and underwent SCART. All 21 patients have eligible data for study follow-up. Radiotherapy was well tolerated with all treatment completed as scheduled. The dose was escalated for two patients to 24GyX3. No grade 3 or higher toxicity was observed in any of the enrolled patients. The average age of patients was 66 years (range: 14-85) and 13 (62%) patients were male. The median SCART dose was 18Gy (range: 15 - 24). Six out of the 18 patients with data for overall survival (OS) died, and the median time to death was 16.3 months (range: 1 - 25.6). The mean percent change for tumor shrinkage between first visit volumes and post-SCART volumes was 49.5% (SD: 40.89, p-value:0.009). Conclusion: SCART was safely escalated to 24 GyX 3 fractions, which is the maximum Tolerated Dose (MTD) for SCART. This regimen will be used in future phase II trials.

3.
Article in English | MEDLINE | ID: mdl-38861431

ABSTRACT

To overcome the restriction of identical distribution assumption, invariant representation learning for unsupervised domain adaptation (UDA) has made significant advances in computer vision and pattern recognition communities. In UDA scenario, the training and test data belong to different domains while the task model is learned to be invariant. Recently, empirical connections between transferability and discriminability have received increasing attention, which is the key to understand the invariant representations. However, theoretical study of these abilities and in-depth analysis of the learned feature structures are unexplored yet. In this work, we systematically analyze the essentials of transferability and discriminability from the geometric perspective. Our theoretical results provide insights into understanding the co-regularization relation and prove the possibility of learning these abilities. From methodology aspect, the abilities are formulated as geometric properties between domain/cluster subspaces (i.e., orthogonality and equivalence) and characterized as the relation between the norms/ranks of multiple matrices. Two optimization-friendly learning principles are derived, which also ensure some intuitive explanations. Moreover, a feasible range for the co-regularization parameters is deduced to balance the learning of geometric structures. Based on the theoretical results, a geometry-oriented model is proposed for enhancing the transferability and discriminability via nuclear norm optimization. Extensive experiment results validate the effectiveness of the proposed model in empirical applications, and verify that the geometric abilities can be sufficiently learned in the derived feasible range.

4.
Heliyon ; 10(9): e30006, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694075

ABSTRACT

Background: Wall shear stress (WSS) has been proved to be related to the formation, development and rupture of intracranial aneurysms. Aneurysm wall enhancement (AWE) on magnetic resonance imaging (MRI) can be caused by inflammation and have confirmed its relationship with low WSS. High WSS can also result in inflammation but the research of its correlation with AWE is lack because of the focus on large aneurysms limited by 3T MRI in most previous studies.This study aimed to assess the potential association between high or low WSS and AWE in different aneuryms. Especially the relationship between high WSS and AWE in small aneurysm. Methods: Forty-three unruptured intracranial aneurysms in 42 patients were prospectively included for analysis. 7.0 T MRI was used for imaging. Aneurysm size was measured on three-dimensional time-of-flight (TOF) images. Aneurysm-to-pituitary stalk contrast ratio (CRstalk) was calculated on post-contrast black-blood T1-weighted fast spin echo sequence images. Hemodynamics were assessed by four-dimensional flow MRI. Results: The small aneurysms group had more positive WSS-CRstalk correlation coefficient distribution (dome: 78.6 %, p = 0.009; body: 50.0 %, p = 0.025), and large group had more negative coefficient distribution (dome: 44.8 %, p = 0.001; body: 69.0 %, p = 0.002). Aneurysm size was positively correlated with the significant OSI-CRstalk correlation coefficient at the dome (p = 0.012) and body (p = 0.010) but negatively correlated with the significant WSS-CRstalk correlation coefficient at the dome (p < 0.001) and body (p = 0.017). Conclusion: AWE can be mediated by both high and low WSS, and translate from high WSS- to low WSS-mediated pathways as size increase. Additionally, AWE may serve as an indicator of the stage of aneurysm development via different correlations with hemodynamic factors.

5.
ACS Appl Mater Interfaces ; 16(19): 24987-24998, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712685

ABSTRACT

For traditional ferroelectric field-effect transistors (FeFETs), enhancing the polarization domain of bulk ferroelectric materials is essential to improve device performance. However, there has been limited investigation into the enhancement of polarization field in two-dimensional (2D) ferroelectric material such as CuInP2S6 (CIPS). In this study, similar to bulk ferroelectric materials, CIPS exhibited enhanced polarization field upon application of external cyclic voltage. Moreover, unlike traditional ferroelectric materials, the polarization enhancement of CIPS is not due to redistribution of the defect but rather originates from a mechanism: the long-distance migration of Cu ions. We termed this mechanism the "wake-up-like effect". After incorporating the wake-up-like effect into the graphene/CIPS/WSe2 FeFET device, we successfully increased the hysteresis window and enhanced the current on/off ratio by 4 orders of magnitude. Moreover, the FeFET yielded remarkable achievements, such as multilevel nonvolatile memory with 21 distinct conductance levels, a high on/off ratio exceeding 106, a long retention time exceeding 103 s, and neuromorphic computing with 93% accuracy at recognizing handwritten digits. Introducing the wake-up-like effect to 2D CIPS may pave the way for innovative approaches to achieve advanced multilevel nonvolatile memory and neuromorphic computing capabilities for next-generation micro-nanoelectronic devices.

6.
Adv Mater ; : e2404199, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38734974

ABSTRACT

External stimuli triggering chemical reactions in cancer cells to generate highly reactive chemical species are very appealing for cancer therapy, in which external irradiation activating sensitizers to transfer energy or electrons to surrounding oxygen or other molecules is critical for generating cytotoxic reactive species. However, poor light penetration into tissue, low activity of sensitizers, and reliance on oxygen supply restrict the generation of cytotoxic chemical species in hypoxic tumors, which lowers the therapeutic efficacy. Here, this work presents galvanic cell nanomaterials that can directly release highly reactive electrons in tumors without external irradiation or photosensitizers. The released reactive electrons directly react with surrounding biomolecules such as proteins and DNA within tumors to destroy them or react with other surrounding (bio)molecules to yield cytotoxic chemical species to eliminate tumors independent of oxygen. Administering these nanogalvanic cells to mice results in almost complete remission of subcutaneous solid tumors and deep metastatic tumors. The results demonstrate that this strategy can further arouse an immune response even in a hypoxic environment. This method offers a promising approach to effectively eliminate tumors, similar to photodynamic therapy, but does not require oxygen or irradiation to activate photosensitizers.

7.
Curr Med Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809380

ABSTRACT

OBJECTIVE: The study sought to investigate the clinical predictive value of quantitative flow ratio (QFR) for the long-term target vessel failure (TVF) outcome in patients with in-stent restenosis (ISR) by using drug-coated balloon (DCB) treatment after a long-term follow-up. METHODS: This was a retrospective study. A total of 186 patients who underwent DCB angioplasty for ISR in two hospitals from March 2014 to September 2019 were enrolled. The QFR of the entire target vessel was measured offline. The primary endpoint was TVF, including target vessel-cardiac death (TV-CD), target vessel-myocardial infarction (TV-MI), and clinically driven-target vessel revascularization (CD-TVR). RESULTS: The follow-up time was 3.09±1.53 years, and 50 patients had TVF. The QFR immediately after percutaneous coronary intervention (PCI) was significantly lower in the TVF group than in the no-TVF group. Multivariable Cox regression analysis indicated that the QFR immediately after PCI was an excellent predictor for TVF after the long-term follow-up [hazard ratio (HR): 5.15×10-5 (6.13×10-8-0.043); P<0.01]. Receiver-operating characteristic (ROC) curve analysis demonstrated that the optimal cut-off value of the QFR immediately after PCI for predicting the long-term TVF was 0.925 (area under the curve: 0.886, 95% confidence interval: 0.834-0.938; sensitivity: 83.40%, specificity: 88.00; P<0.01). In addition, QFR≤0.925 post-PCI was strongly correlated with the TVF, including TV-MI and CD-TVR (P<0.01). CONCLUSION: The QFR immediately after PCI showed a high predictive value of TVF after a long-term follow-up in ISR patients who underwent DCB angioplasty. A lower QFR immediately after PCI was associated with a worse TVF outcome.

8.
J Vis Exp ; (207)2024 May 10.
Article in English | MEDLINE | ID: mdl-38801264

ABSTRACT

The treatment of severe acute pancreatitis (SAP), with high mortality rates, poses a significant clinical challenge. Investigating the pathological changes associated with SAP using animal models can aid in identifying potential therapeutic targets and exploring novel treatment approaches. Previous studies primarily induced pancreatic injury through retrograde bile duct injection of sodium taviaurocholate, but the impact of surgical damage on the quality of the animal model remains unclear. In this study, we employed various frequencies of intraperitoneal Caerulein injections combined with different doses of LPS to induce pancreatic injury in C57BL/6J mice and compared the extent of injury across five intraperitoneal injection protocols. Regarding inducing acute pancreatitis in mice, an intraperitoneal injection protocol is proposed that results in a mortality rate as high as 80% within 5 days. Specifically, mice received ten daily intraperitoneal injections of Caerulein (50 µg/kg), followed by an injection of LPS (15 mg/kg) one hour after the last Caerulein administration. By adjusting the frequency and dosage of injected medications, one can manipulate the severity of pancreatic injury effectively. This model exhibits strong controllability and has a short replication cycle, making it feasible for completion by a single researcher without requiring expensive equipment. It conveniently and accurately simulates key disease characteristics observed in human SAP while demonstrating a high degree of reproducibility.


Subject(s)
Ceruletide , Disease Models, Animal , Lipopolysaccharides , Mice, Inbred C57BL , Pancreatitis , Animals , Mice , Pancreatitis/pathology , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Injections, Intraperitoneal , Male , Acute Disease
9.
PLoS One ; 19(5): e0302547, 2024.
Article in English | MEDLINE | ID: mdl-38820294

ABSTRACT

INTRODUCTION: The natural outcome of coronary plaque in acute coronary syndrome (ACS) patients with chronic kidney disease (CKD) is unique, which can be analyzed quantitatively by optical flow ratio (OFR) software. METHODS: A total of 184 ACS patients with at least one nonculprit subclinical atherosclerosis (NSA) detected by optical coherence tomography (OCT) at baseline and 1-year follow-up were divided into non-CKD group (n = 106, estimated glomerular filtration rate (eGFR)> 90 mL/(min×1.73 m2)) and mild CKD group (n = 78, 60≤eGFR<90 mL/(min×1.73 m2)). Changes of normalized total atheroma volume (TAVn) of NSA was the primary endpoint at the 1-year follow-up. RESULTS: Patients with mild CKD showed more TAVn progression of NSA than non-CKD (p = 0.019) from baseline to the 1-year follow-up, which was mainly due to an increase in calcium TAVn (p<0.001). The morphological change in the maximal calcification thickness (p = 0.026) was higher and the change in the distance from the calcified surface to the contralateral coronary media membrane (ΔC-to-M) at the maximal cross-sectional calcium area was lower (p<0.001) in mild CKD group than in non-CKD group. Mild CKD had more NSA related MACEs at the 5-year follow-up than non-CKD (30.8% vs. 5.8%, p = 0.045). CONCLUSIONS: Mild CKD patients had more plaque progression of NSA which showed the increase of calcium component with more protrusion into the lumen morphologically at the 1-year follow-up and a higher corresponding incidence of NSA-related MACEs at the 5-year follow-up. TRIAL REGISTRATION: Clinical Trial registration ClinicalTrials.gov. NCT02140801. https://classic.clinicaltrials.gov/ct2/show/NCT02140801.


Subject(s)
Acute Coronary Syndrome , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Tomography, Optical Coherence , Humans , Male , Female , Acute Coronary Syndrome/pathology , Acute Coronary Syndrome/diagnostic imaging , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/complications , Middle Aged , Follow-Up Studies , Aged , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Disease Progression , Atherosclerosis/pathology , Atherosclerosis/diagnostic imaging , Atherosclerosis/complications , Coronary Artery Disease/pathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/complications , Clinical Relevance
10.
JAMA Netw Open ; 7(5): e2413708, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809553

ABSTRACT

Importance: Helicobacter pylori treatment and nutrition supplementation may protect against gastric cancer (GC), but whether the beneficial effects only apply to potential genetic subgroups and whether high genetic risk may be counteracted by these chemoprevention strategies remains unknown. Objective: To examine genetic variants associated with the progression of gastric lesions and GC risk and to assess the benefits of H pylori treatment and nutrition supplementation by levels of genetic risk. Design, Setting, and Participants: This cohort study used follow-up data of the Shandong Intervention Trial (SIT, 1989-2022) and China Kadoorie Biobank (CKB, 2004-2018) in China. Based on the SIT, a longitudinal genome-wide association study was conducted to identify genetic variants for gastric lesion progression. Significant variants were examined for incident GC in a randomly sampled set of CKB participants (set 1). Polygenic risk scores (PRSs) combining independent variants were assessed for GC risk in the remaining CKB participants (set 2) and in an independent case-control study in Linqu. Exposures: H pylori treatment and nutrition supplementation. Main Outcomes and Measures: Primary outcomes were the progression of gastric lesions (in SIT only) and the risk of GC. The associations of H pylori treatment and nutrition supplementation with GC were evaluated among SIT participants with different levels of genetic risk. Results: Our analyses included 2816 participants (mean [SD] age, 46.95 [9.12] years; 1429 [50.75%] women) in SIT and 100 228 participants (mean [SD] age, 53.69 [11.00] years; 57 357 [57.23%] women) in CKB, with 147 GC cases in SIT and 825 GC cases in CKB identified during follow-up. A PRS integrating 12 genomic loci associated with gastric lesion progression and incident GC risk was derived, which was associated with GC risk in CKB (highest vs lowest decile of PRS: hazard ratio [HR], 2.54; 95% CI, 1.80-3.57) and further validated in the analysis of 702 case participants and 692 control participants (mean [SD] age, 54.54 [7.66] years; 527 [37.80%] women; odds ratio, 1.83; 95% CI, 1.11-3.05). H pylori treatment was associated with reduced GC risk only for individuals with high genetic risk (top 25% of PRS: HR, 0.45; 95% CI, 0.25-0.82) but not for those with low genetic risk (HR, 0.81; 95% CI, 0.50-1.34; P for interaction = .03). Such effect modification was not found for vitamin (P for interaction = .93) or garlic (P for interaction = .41) supplementation. Conclusions and Relevance: The findings of this cohort study indicate that a high genetic risk of GC may be counteracted by H pylori treatment, suggesting primary prevention could be tailored to genetic risk for more effective prevention.


Subject(s)
Genetic Predisposition to Disease , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/epidemiology , Female , Male , Middle Aged , Helicobacter Infections/drug therapy , Helicobacter Infections/complications , China/epidemiology , Genome-Wide Association Study , Case-Control Studies , Adult , Risk Factors , Dietary Supplements , Cohort Studies , Aged , Anti-Bacterial Agents/therapeutic use
11.
Neurosurgery ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819159

ABSTRACT

BACKGROUND AND OBJECTIVES: Understanding post-treatment hemodynamic alterations and their association with the patency of covered branch arteries is limited. This study aims to identify hemodynamic changes after flow diverter stenting and investigate their correlation with the patency status of covered branch arteries. METHODS: All patients treated with pipeline embolization device for anterior cerebral artery aneurysms at our center between 2016 and 2020 were screened for inclusion. Quantitative digital subtraction angiography was used to analyze changes in hemodynamic parameters pre- and post-stenting. The patency status of covered branch arteries after stenting was categorized as either patent or flow impairment (defined as artery stenosis or occlusion). RESULTS: A total of 71 patients, encompassing 89 covered branch arteries, were enrolled. Flow impairment was observed in 11.2% (10/89) of the branches. The mean transit time and full width at half maximum (FWHM) in covered branches were significantly prolonged post-stenting (P = .004 and .023, respectively). Flow-impaired branch arteries exhibited hemodynamic shifts contrary to those in patent branch arteries. Specifically, flow-impaired branches showed marked reductions in time to peak, FWHM, and mean transit time (decreases of 32.8%, 32.6%, and 29%, respectively; P = .006, .002, and .002, respectively). Further multivariate analysis revealed that reductions in FWHM in the branches (odds ratio = 0.97, 95% CI: 0.95-0.99, P = .007) and smoking (odds ratio = 14.5, 95% CI: 1.39-151.76, P = .026) were independent predictors of flow impairment of covered branches. CONCLUSION: Pipeline embolization device stenting can cause a reduction in blood flow in branch arteries. Compared with patent branches, flow-impaired branches exhibit an increase in blood flow velocity after stenting. Smoking and ΔFWHM in the covered branches indicate flow impairment.

12.
ACS Appl Mater Interfaces ; 16(22): 28905-28916, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38773780

ABSTRACT

The two-step sequential deposition strategy has been widely recognized in promoting the research and application of perovskite solar cells, but the rapid reaction of organic salts with lead iodide inevitably affects the growth of perovskite crystals, accompanied by the generation of more defects. In this study, the regulation of crystal growth was achieved in a two-step deposition method by mixing 1-naphthylmethylammonium bromide (NMABr) with organic salts. The results show that the addition of NMABr effectively delays the aggregation and crystallization behavior of organic salts; thereby, the growth of the optimal crystal (001) orientation of perovskite is promoted. Based on this phenomenon of delaying the crystallization process of perovskite, the "slow-release effect assisted crystallization" is defined. Moreover, the incorporation of the Br element expands the band gap of perovskite and mitigates material defects as nonradiative recombination centers. Consequently, the power conversion efficiency (PCE) of the enhanced perovskite solar cells (PSCs) reaches 20.20%. It is noteworthy that the hydrophobic nature of the naphthalene moiety in NMABr can enhance the humidity resistance of PSCs, and the perovskite phase does not decompose for more than 3000 h (30-40% RH), enabling it to retain 90% of its initial efficiency even after exposure to a nitrogen environment for 1200 h.

13.
ACS Nano ; 18(22): 14218-14230, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38787298

ABSTRACT

Device-level implementation of soft materials for energy conversion and thermal management demands a comprehensive understanding of their thermal conductivity and elastic modulus to mitigate thermo-mechanical challenges and ensure long-term stability. Thermal conductivity and elastic modulus are usually positively correlated in soft materials, such as amorphous macromolecules, which poses a challenge to discover materials that are either soft and thermally conductive or hard and thermally insulative. Here, we show anomalous correlations of thermal conductivity and elastic modulus in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIP) by engineering the molecular interactions between organic cations. By replacing conventional alkyl-alkyl and aryl-aryl type organic interactions with mixed alkyl-aryl interactions, we observe an enhancement in elastic modulus with a reduction in thermal conductivity. This anomalous dependence provides a route to engineer thermal conductivity and elastic modulus independently and a guideline to search for better thermal management materials. Further, introducing chirality into the organic cation induces a molecular packing that leads to the same thermal conductivity and elastic modulus regardless of the composition across all half-chiral 2D HOIPs. This finding provides substantial leeway for further investigations in chiral 2D HOIPs to tune optoelectronic properties without compromising thermal and mechanical stability.

14.
Angew Chem Int Ed Engl ; : e202400823, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735839

ABSTRACT

Separating acetylene from carbon dioxide is important but highly challenging due to their similar molecular shapes and physical properties. Adsorptive separation of carbon dioxide from acetylene can directly produce pure acetylene but is hardly realized because of relatively polarizable acetylene binds more strongly. Here, we reverse the CO2 and C2H2 separation by adjusting the pore structures in two isoreticular ultramicroporous metal-organic frameworks (MOFs). Under ambient conditions, copper isonicotinate (Cu(ina)2), with relatively large pore channels shows C2H2-selective adsorption with a C2H2/CO2 selectivity of 3.4, whereas its smaller-pore analogue, copper quinoline-5-carboxylate (Cu(Qc)2) shows an inverse CO2/C2H2 selectivity of 5.6. Cu(Qc)2 shows compact pore space that well matches the optimal orientation of CO2 but is not compatible for C2H2. Neutron powder diffraction experiments confirmed that CO2 molecules adopt preferential orientation along the pore channels during adsorption binding, whereas C2H2 molecules bind in an opposite fashion with distorted configurations due to their opposite quadrupole moments. Dynamic breakthrough experiments have validated the separation performance of Cu(Qc)2 for CO2/C2H2 separation.

15.
Anal Chem ; 96(16): 6444-6449, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38597812

ABSTRACT

As two mainstream ionic detection techniques, ionic current rectification (ICR) suffers from large fluctuations in trace level detection, while resistive-pulse sensing (RPS) encounters easy clogs in high-concentration detection. By rationally matching the nanopore size with the DNA tetrahedron (TDN), this work bridges the two techniques to achieve reliable detection with wide linearity. As a representative analyte, miRNA-10b could specifically combine with and release TDN from the interior wall, which thus induced the simultaneous generation of distinct ICR and RPS signals. The ICR signals could be attributed to the balance between the effective orifice and surface charge density of the inner wall, while the RPS signals were induced by the complex of miRNA-10b and TDN passing through the nanopore. Such an operation contributed to a wide detection range of 1 fM-1 nM with a good linearity. The feasibility of this method is also validated in single-cell and real plasma detection.

16.
Angew Chem Int Ed Engl ; 63(23): e202405761, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38587998

ABSTRACT

Vitrimers offer a unique combination of mechanical performance, reprocessability, and recyclability that makes them highly promising for a wide range of applications. However, achieving dynamic behavior in vitrimeric materials at their intended usage temperatures, thus combining reprocessability with adaptivity through associative dynamic covalent bonds, represents an attractive but formidable objective. Herein, we couple boron-nitrogen (B-N) dative bonds and B-O covalent bonds to generate a new class of vitrimers, boron-nitrogen vitrimers (BNVs), to endow them with dynamic features at usage temperatures. Compared with boron-ester vitrimers (BEVs) without B-N dative bonds, the BNVs with B-N dative bonds showcase enhanced mechanical performance. The excellent mechanical properties come from the synergistic effect of the dative B-N supramolecular polymer and covalent boron-ester networks. Moreover, benefiting from the associative exchange of B-O dynamic covalent bonds above their topological freezing temperature (Tv), the resultant BNVs also possess the processability. This study leveraged the structural characteristics of a boron-based vitrimer to achieve material reinforcement and toughness enhancement, simultaneously providing novel design concepts for the construction of new vitrimeric materials.

17.
Article in English | MEDLINE | ID: mdl-38558145

ABSTRACT

Previous studies about anhedonia symptoms in bipolar depression (BD) ignored the unique role of gender on brain function. This study aims to explore the regional brain neuroimaging features of BD with anhedonia and the sex differences in these patients. The resting-fMRI by applying fractional amplitude of low-frequency fluctuation (fALFF) method was estimated in 263 patients with BD (174 high anhedonia [HA], 89 low anhedonia [LA]) and 213 healthy controls. The effects of two different factors in patients with BD were analyzed using a 3 (group: HA, LA, HC) × 2 (sex: male, female) ANOVA. The fALFF values were higher in the HA group than in the LA group in the right medial cingulate gyrus and supplementary motor area. For the sex-by-group interaction, the fALFF values of the right hippocampus, left medial occipital gyrus, right insula, and bilateral medial cingulate gyrus were significantly higher in HA males than in LA males but not females. These results suggested that the pattern of high activation could be a marker of anhedonia symptoms in BD males, and the sex differences should be considered in future studies of BD with anhedonia symptoms.

18.
Chem Sci ; 15(13): 4910-4919, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550697

ABSTRACT

Recycling vinyl polymers is essential to mitigate the environmental impact of plastic waste. However, typical polymerization strategies to construct vinyl polymers lack the ability to incorporate degradable linkers throughout the main chain. We report a RAFT step-growth polymerization through the Z-group approach that is directly carried out by using a common class of symmetric trithiocarbonate based RAFT agents and commercially available bismaleimide monomers. Such synthesized RAFT step-growth polymers contain embedded RAFT agents in every structural unit, allowing chain expansion of the step-growth backbone via controlled chain growth to yield linear multiblock (co)polymers. These polymers can undergo deconstruction via the RAFT interchange process with exogeneous RAFT agents, generating smaller uniform species with narrow molecular weight distribution. In addition, the telechelic bifunctional RAFT agent nature after deconstruction allows repolymerization, showing a promising method for recycling common vinyl polymers.

19.
ChemSusChem ; 17(9): e202400171, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38483261

ABSTRACT

Flexible electronics have received considerable attention in the past decades due to their promising application in rollable display screens, wearable devices, implantable devices, and other electronic applications. In particular, conjugated polymers are favored for flexible electronics due to their mechanical flexibility and potential for solution-processed fabrication techniques, such as blade-coating, roll-to-roll printing, and high-throughput printing allowing for high-performance transistor devices. Thiophene is the prevailing conjugated unit to construct these conjugated polymers due to its favorable electronic properties. On the other hand, furans are among the few conjugated moieties that are easily derived from bio renewable resources. To promote sustainability, we selectively introduced furan into the conjugated backbone of a high-mobility polymer scaffold and systematically studied the effect on the microstructure and charge transport. We show that partially and selectively replacing thiophene units with furan can yield nearly comparable performance compared to the all-thiophene polymer. This strategy offers an improvement in the sustainability of the polymer by incorporating bio-sourced furan without sacrificing the high-performance characteristics. Meanwhile, polymers with incorrect or complete furan incorporation show reduced mobilities. This work serves to develop coherent structure-morphology-performance relationships; such knowledge will establish guidelines for the future development of sustainable, furan-based conjugated materials.

20.
Nat Mater ; 23(6): 782-789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491147

ABSTRACT

Coupling of spin and charge currents to structural chirality in non-magnetic materials, known as chirality-induced spin selectivity, is promising for application in spintronic devices at room temperature. Although the chirality-induced spin selectivity effect has been identified in various chiral materials, its Onsager reciprocal process, the inverse chirality-induced spin selectivity effect, remains unexplored. Here we report the observation of the inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers. Using spin-pumping techniques, the inverse chirality-induced spin selectivity effect enables quantification of the magnitude of the longitudinal spin-to-charge conversion driven by chirality-induced spin selectivity in different chiral polymers. By widely tuning conductivities and supramolecular chiral structures via a printing method, we found a very long spin relaxation time of up to several nanoseconds parallel to the chiral axis. Our demonstration of the inverse chirality-induced spin selectivity effect suggests possibilities for elucidating the puzzling interplay between spin and chirality, and opens a route for spintronic applications using printable chiral assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL
...