Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 874: 162548, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36870507

ABSTRACT

Livestock slurry has been reported to be a potential secondary raw material as it contains macronutrients ­nitrogen, phosphorus and potassium-, which could be valorised as high-quality fertilizers if proper separation and concentration of valuable compounds is performed. In this work, pig slurry liquid fraction was assessed for nutrient recovery and valorisation as fertilizer. Some indicators were used to evaluate the performance of proposed train of technologies within the framework of circular economy. As ammonium and potassium species are highly soluble at the whole pH range, a study based on phosphate speciation at pH from 4 to 8 was assessed to improve the macronutrients recovery from the slurry, resulting in two different treatment trains at acidic and alkaline conditions. The acidic treatment system based on centrifugation, microfiltration and forward osmosis was applied to obtain a nutrient-rich liquid organic fertilizer containing 1.3 % N, 1.3 % P2O5 and 1.5 % K2O. The alkaline path of valorisation was composed by centrifugation and stripping by using membrane contactors to produce an organic solid fertilizer -7.7 % N, 8,0 % P2O5 and 2.3 % K2O-, ammonium sulphate solution -1.4 % N- and irrigation water. In terms of circularity indicators, 45.8 % of the initial water content and <50 % of contained nutrients were recovered - 28.3 % N, 43.5 % P2O5 and 46.6 % K2O - in the acidic treatment resulting in 68.68 g fertilizer per kg of treated slurry. 75.1 % of water was recovered as irrigation water and 80.6 % N, 99.9 % P2O5, 83.4 % K2O was valorised in the alkaline treatment, as 219.60 g fertilizer per kg of treated slurry. Treatment paths at acidic and alkaline conditions yield promising results for nutrients recovery and valorisation as the obtained products (nutrient rich organic fertilizer, solid soil amendment and ammonium sulphate solution) fulfil the European Regulation for fertilizers to be potentially used in crop fields.


Subject(s)
Fertilizers , Nitrogen , Swine , Animals , Fertilizers/analysis , Ammonium Sulfate , Phosphorus , Acids , Potassium , Water , Nutrients
2.
Sci Total Environ ; 656: 902-909, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30625676

ABSTRACT

This study presents the financial assessment for implementing an ammonium and phosphate simultaneous recovery process based on the use of calcium activated synthetic zeolites in a large urban Waste Water Treatment Plant (WWTP) located in the Metropolitan Area of Barcelona. A calcium activated synthetic zeolites was selected, after a benchmarking analysis, as it reported capability for simultaneously recover ammonium and phosphate by a combined mechanism of ion exchange for ammonium and formation of insoluble mineral phase for phosphate. The loaded sorbent, rich in ammonium and phosphate, can be used as slow-release fertilizer. Financial indexes such as the net present value, the internal return rate, the return of investment and the payback period were calculated concluding that the integration of a zeolite-based sorption treatment stage in the main stream is economically feasible, with a reasonable payback period. The need, to achieve low-levels of P and N on the discharged waters and the need to develop more sustainable WWTP facilities indicate that the deployment of nutrient recovery solutions will be encouraged. The sensitivity analysis carried out to define the critical parameters of the economic performance of the technology allows concluding that the main variable in the viability of the nutrient recovery unit is related to the nutrients sorbent, both in the cost of purchase and in the market for the sorbent loaded with nutrients.

SELECTION OF CITATIONS
SEARCH DETAIL
...