Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399898

ABSTRACT

Polypropylene (PP) is one of the most extensively used commodity plastics. In terms of eco-friendliness, it is worth considering preparing high-lignin-filled PP. This study explores the incorporation of high lignin content, derived from acetic acid lignin (AAL) and Kraft lignin (KL), into PP through twin-screw extrusion and injection molding. The challenge lies in maintaining mechanical performance. A compatibilizer-specifically, maleic anhydride-grafted polypropylene (MAPP)-is employed to enhance lignin-PP compatibility by chemically bonding with lignin and physically associating with the PP phase. Results indicate that KL maintains better dispersity than AAL. Compatibilizers with a high maleic anhydride (MA) level (≥0.8 wt.%) and moderate melt flow index (MFI) in the range of 60-100 g 10 min⁻¹ prove favorable in constructing a reinforced PP/KL network. Optimizing with 40 wt.% lignin content and 10 parts per hundred (pph) of compatibilizer yields blends with mechanical performance comparable to neat PP, exhibiting a notable increase in modulus and heat deflection temperature (HDT). Furthermore, utilizing PP/lignin blends can lead to a 20% reduction in expenses and approximately 40% reduction in PP-induced greenhouse gas (GHG) emissions. This approach not only reduces PP costs but also adds value to lignin utilization in a sustainable and cost-effective manner.

2.
Polymers (Basel) ; 15(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37112094

ABSTRACT

Lignin-based carbon fibers (LCFs) with graphitized structures decorated on their surfaces were successfully prepared using the simultaneous catalyst loading and chemical stabilization of melt-spun lignin fibers, followed by quick carbonization functionalized as catalytic graphitization. This technique not only enables surficial graphitized LCF preparation at a relatively low temperature of 1200 °C but also avoids additional treatments used in conventional carbon fiber production. The LCFs were then used as electrode materials in a supercapacitor assembly. Electrochemical measurements confirmed that LCF-0.4, a sample with a relatively low specific surface area of 89.9 m2 g-1, exhibited the best electrochemical properties. The supercapacitor with LCF-0.4 had a specific capacitance of 10.7 F g-1 at 0.5 A g-1, a power density of 869.5 W kg-1, an energy density of 15.7 Wh kg-1, and a capacitance retention of 100% after 1500 cycles, even without activation.

3.
RSC Med Chem ; 14(1): 173-182, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36760741

ABSTRACT

4',5,7-OHs are common substituents of natural flavonoids, a type of effective phenolic antioxidant. However, the antioxidant processes between 4',5,7-trihydroxyflavonoids with different structural types have not been compared systematically, and the antioxidant products are challenging to determine. This study compared four 4',5,7-trihydroxyflavonoids, including apigenin, genistein, kaempferol, and naringenin. In quantum chemical analyses, the four 4',5,7-trihydroxyflavonoids showed different thermodynamic properties, and the C4'-OH (or C3-OH of kaempferol) possessed the strongest activity. Moreover, the reaction rate constants were larger when a hydrogen atom was transferred from C4'-OH (or C3-OH of kaempferol) than from C5-OH. When different atoms were linked to 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙), the C3'-DPPH adducts showed the smallest energy. In experimental assays, the scavenging ability for neutral free radicals, radical cations, and radical anions was negatively correlated with the corresponding theoretical parameters. Finally, mass spectroscopy detected the apigenin-DPPH˙, genistein-DPPH˙, and naringenin-DPPH˙ adduct peaks. In conclusion, the structural type of 4',5,7-trihydroxyflavonoids can affect the antioxidant ability, site, and speed, but not the mechanism. After hydrogen abstraction at C4'-OH, 4',5,7-trihydroxyflavones, 4',5,7-trihydroxyisoflavones, and 4',5,7-trihydroxyflavanones will produce antioxidant products via C3'-radical linking.

4.
J Colloid Interface Sci ; 639: 333-342, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36812850

ABSTRACT

HYPOTHESIS: Electrochemical manufacture of H2O2 through the two-electron oxygen reduction reaction (2e- ORR), providing prospects of the distributed production of H2O2 in remote regions, is considered a promising alternative to the energy-intensive anthraquinone oxidation process. EXPERIMENTS: In this study, one glucose-derived oxygen-enriched porous carbon material (labeled as HGC500) is developed through a porogen-free strategy integrating structural and active site modification. FINDINGS: The superhydrophilic surface and porous structure together promote the mass transfer of reactants and accessibility of active sites in the aqueous reaction, while the abundant CO species (e.g., aldehyde groups) are taken for the main active site to facilitate the 2e- ORR catalytic process. Benefiting from the above merits, the obtained HGC500 possesses superior performance with a selectivity of 92 % and mass activity of 43.6 A gcat-1 at 0.65 V (vs. RHE). Besides, the HGC500 can operate steadily for 12 h with the accumulation of H2O2 reaching up to 4090±71 ppm and a Faradic efficiency of 95 %. The H2O2 generated from the electrocatalytic process in 3 h can degrade a variety of organic pollutants (10 ppm) in 4-20 min, displaying the potential in practical applications.

5.
Micromachines (Basel) ; 13(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36144054

ABSTRACT

Metal substrates are widely used in engineering production. However, material life reduction and economic loss due to chemical and electrochemical corrosion are a major problem facing people. Electrochemical corrosion is the main corrosion mode of metals, such as seawater corrosion. It is found that the superhydrophobic surface treated by laser texturing plays an important role in the corrosion resistance of the substrate, with the laser texturing process and post-treatment affecting the corrosion resistance. The corrosion resistance is positively correlated with the superhydrophobic property of the surface. For the mechanism of corrosion resistance, this paper summarizes the effect of micro-nano structure, surface-modified coating, oxidation layer or new product layer, surface inhomogeneity, crystal structure, and slippery surface on corrosion resistance. Superhydrophobic surface and slippery surface are two common types of bioinspired, special wetting surfaces. In order to prepare better superhydrophobic and corrosion-resistant surfaces, this paper summarizes the selection and optimization of laser parameters, surface structure, processing media, and post-treatment from the point of view of mechanism and law. In addition, after summarizing the corrosion resistance mechanism, this paper introduces a series of characterization experiments that can measure the corrosion resistance, providing a reference for preparation and evaluation of the surface.

6.
Huan Jing Ke Xue ; 43(7): 3463-3472, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791531

ABSTRACT

Continuous sampling using the tank sampling method were conducted in Changsha, Zhuzhou, and Xiangtan cities from August 18 to 27, 2020, and 106 VOCs species were analyzed using GC-MS analysis. Then, the regional VOCs concentrations, generation potential, and source of VOCs were studied. The results showed that the average φ(VOCs) was (20.5±10.5)×10-9 in the Changsha-Zhuzhou-Xiangtan area, in which OVOCs (33.5%) and alkanes (28.2%) accounted for the highest proportion. The ozone formation potential (OFP) of VOCs was 118.5 µg·m-3, and the contributions of aromatic hydrocarbons, olefin, and OVOCs to OFP were 37.4%, 24.2%, and 23.6%, respectively. The average secondary organic aerosol formation potential (SOAp) of the VOCs was 0.5 µg·m-3, and the contribution of aromatic hydrocarbons to SOAp was 97.0%, among which C8 aromatic hydrocarbons contributed 41.7%. Toluene, m/p-xylene, and o-xylene were the common dominant species that contributed significantly to OFP and SOAp. The characteristic ratio results showed that VOCs in Changsha were relatively influenced by industrial processes and solvent use, whereas Zhuzhou and Xiangtan were more affected by coal and biomass combustion. The PMF results showed that the VOCs mainly came from vehicle exhaust and oil and gas volatilization (27.2%), coal and biomass combustion (23.7%), industrial processes (20.4%), solvent use (17.2%), and natural sources (11.5%) in the Changsha-Zhuzhou-Xiangtan area.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Coal/analysis , Environmental Monitoring , Ozone/analysis , Solvents/analysis , Volatile Organic Compounds/analysis
7.
Small Methods ; 5(4): e2000842, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34927840

ABSTRACT

The interface contact between the active material and its neighboring metal electrodes dominates the sensing response of mainstream high-sensitivity piezoresistive pressure sensors. However, the properties of such interface are often difficult to control and preserve owing to the limited strategies to precisely engineer the surface structure and mechanical property of the active material. Here, a top-down fabrication method to create a grid-like polyurethane fiber-based spacer layer at the interface between a piezoresistive layer and its contact electrodes is proposed. The tuning of the period and thickness of the spacer layer is conveniently achieved by a programmable near-field electrospinning process, and the influence of the spacer structure on the sensing performance is systematically investigated. The sensor with the optimized spacer layer shows a widened sensing range (230 kPa) while maintaining a high sensitivity (1.91 kPa-1 ). Furthermore, the output current fluctuation of the sensors during a 74 000-cycle test is drastically reduced from 14.28% (without a spacer) to 3.63% (with a spacer), demonstrating greatly enhanced long-term reliability. The new near-field electrospinning-based strategy is capable of tuning sensor responses without changing the active material, providing a universal and scalable path to engineer the performances of contact-dominant sensors.

8.
Soft Matter ; 17(41): 9399-9409, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34605837

ABSTRACT

Biopolymer-based functional hydrogels with excellent mechanical properties are desired, but their fabrication remains a challenge. Learning from the tofu-making process, we developed a freely formable hydrogel with high toughness and stiffness from the hydrogen bond-rich coacervation of tannic acid and gelatin through a simple hot-pressing process that transforms the coacervate particles into a bulk hydrogel. The mechanical properties of the obtained gelatin/tannic acid hydrogel (G/T gel) can be controlled by tuning the weight ratio of tannic acid to gelatin in the gel. The G/T gel with optimum mechanical properties possesses high Young's modulus, fracture strain, and fracture energy of ∼60 MPa, ∼10, and ∼24 kJ m-2, respectively. These properties arise from the phase-separated structure and high concentration of dynamic hydrogen bonds with widely distributed bond strengths. These dynamic hydrogen bonds also enable multifunctional properties of the gel, such as self-recovery, self-healing, rebuildability and shape memory. The combination of excellent mechanical properties, good biocompatibility, and useful functionalities into one hydrogel that comes from renewable sources demonstrates the great potential of G/T gels.

9.
ACS Appl Mater Interfaces ; 13(30): 36240-36252, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34309351

ABSTRACT

Flexible energy storage materials and sensors have become the key equipment of human-machine interface technology. For the preparation of these devices, hydrogel electrodes are relevant because of their unique porous structure, high capacitance, flexibility, small size, and lightweight. In this paper, regular polypyrrole (PPy) is synthesized on a heat-induced phase-separated gel (H-Gel/AS) by the template degradation method, and a gelatin-based PPy hydrogel with high strength, high strain rate, and high conductivity is prepared. Moreover, by adding multiwalled carbon nanotubes (MWCNTs) into a gelatin solution according to the H-Gel/AS method, the electrochemical performance of the resulting H-Gel/AS-MWCNTs-PPy electrode is greatly improved. When the H-Gel/AS-MWCNTs-PPy gel is immersed in an ammonium sulfate solution, wrinkles appear on the surface, resulting in further enhancement of the capacitance. On this basis, a flexible sensor and a solid-state supercapacitor are assembled, and their performance is tested. The sensor can detect tensile, bending, and twisting strains with high sensitivity. Meanwhile, as a flexible solid-state supercapacitor, the specific capacitance is 75 F g-1, and the capacitance retention rate after 5000 cycles is 98.1% under bending conditions. More importantly, the gelatin-based hydrogel shows great potential for application in wearable devices.

10.
Eur J Pharmacol ; 897: 173951, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33607105

ABSTRACT

The conventional anti-caries agents exhibit many shortcomings such as poor stability, low efficacy or short residence time in the oral environment, it is urgent to develop efficacy treatments to prevent dental caries. As the most active polyphenols from tea, Epigallocatechin gallate (EGCG) shows remarkable anti-cariogenic bioactivity. However, the poor stability and low bioavailability of EGCG limit its potential application. This study aimed to fabricate nanovesicles in-situ gel based on EGCG phospholipid complex in order to increase its stability and efficacy. The formation of EGCG phospholipid complex was characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The ethanol injection method was used to prepare the EGCG-loaded nanovesicles, an optimal ratio of Poloxamer407 (P407) and Poloxamer188 (P188) as in-situ gel matrix was selected to fabricate oral nanovesicles in-situ gel. EGCG-loaded nanovesicle in-situ gel based on the phospholipid complex had uniform spherical shape without any agglomeration. The discrete nanoparticle with a size (131.44 ± 4.24 nm) and a negative zeta potential value at -30.7 ± 0.5 mV possessed good physical stability and high entrapment efficiency (83.66 ± 3.2%). The formulation exhibited a strong antibacterial activity on S. mutans, which could reduce acid production and tooth surface adhesion. In addition, EGCG formulation could inhibit the formation of glucan and biofilm from S. mutans by suppressing the activity of glycosyltransferase enzymes (GTF). In conclusion, the EGCG-loaded nanovesicle in-situ gel holds great promise as an efficient anti-cariogenic formulation for topical oral delivery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cariostatic Agents/pharmacology , Catechin/analogs & derivatives , Dental Caries/prevention & control , Drug Carriers , Nanoparticles , Phospholipids/chemistry , Staphylococcus aureus/drug effects , Administration, Oral , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Biofilms/drug effects , Biofilms/growth & development , Cariostatic Agents/administration & dosage , Cariostatic Agents/chemistry , Catechin/administration & dosage , Catechin/chemistry , Catechin/pharmacology , Dental Caries/microbiology , Drug Compounding , Drug Liberation , Drug Stability , Gels , Kinetics , Staphylococcus aureus/growth & development
11.
Curr Pharm Biotechnol ; 22(2): 245-253, 2021.
Article in English | MEDLINE | ID: mdl-32867650

ABSTRACT

BACKGROUND: The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissue penetration. METHODS: This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process. RESULTS: Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and Transmission Electron Microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with a size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5%) and positive zeta potential in the range of 22.5-31.2mV, indicating excellent physical stability. DISCUSSION: Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivo compared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentration of voriconazole (2.5µg/mL, p < 0.05). CONCLUSION: In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formulation for the topical ocular delivery of voriconazole.


Subject(s)
Administration, Ophthalmic , Antifungal Agents/administration & dosage , Candida albicans/drug effects , Eye Infections, Fungal/drug therapy , Nanoparticles/administration & dosage , Voriconazole/administration & dosage , Animals , Antifungal Agents/metabolism , Candida albicans/metabolism , Cornea/drug effects , Cornea/metabolism , Drug Carriers , Eye Infections, Fungal/metabolism , Female , Male , Nanoparticles/metabolism , Particle Size , Permeability/drug effects , Rats , Rats, Sprague-Dawley , Voriconazole/metabolism
12.
ACS Appl Mater Interfaces ; 13(1): 1367-1376, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33347279

ABSTRACT

Developing a paper sizing agent to meet the requirements of low cost, high quality of the paper, and environmental sustainability is significant but remains a challenge. Herein, a novel degradable gelatin-based coating emulsion for paper surface sizing was developed by a simple one-step polymerization and blending process. Poly(methacrylic acid) (PMAA) was first introduced to a gelatin solution to form gelatin-PMAA emulsion (G-PMAA) through the formation of hydrogen bonds between PMAA and gelatin. The addition of PMAA endowed gelatin with the increased hydrophobicity and the decreased upper critical solution temperature. Then, a relatively small amount of the flexible poly(butyl acrylate) (PBA), which imparted the toughness of the formed film, was blended with the G-PMAA emulsion to form G-PMAA/PBA emulsion. The G-PMAA/PBA emulsion with a high gelatin content of 0.2 g/mL was in the sol state at room temperature, which facilitated the application of the G-PMAA/PBA emulsion. The corrugated papers sized by G-PMAA/PBA emulsion exhibited excellent mechanical properties and water resistance.

13.
Int J Biol Macromol ; 166: 1586-1616, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33186649

ABSTRACT

"Nanocellulose" have captivated the topical sphere of sturdily escalating market for sustainable materials. The review focuses on the comprehensive understanding of the distinct surface chemistry and functionalities pertaining to the renovation of macro-cellulose at nanodimensional scale to provide an intuition of their processing-structure-function prospective. The abundant availability, cost effectiveness and diverse properties associated with plant-based resources have great economical perspective for developing sustainable cellulose nanomaterials. Hence, emphasis has been given on nanocellulose types obtained from plant-based sources. An overarching goal is to provide the recent advancement in the preparation routes of nanocellulose. Considering the excellent shear thinning/thixotropic/gel-like behavior, the review provids an assemblage of publications specifically dealing with its application as rheology modifier with emphasis on its use as bioink for 3D bioprinting for various biomedical applications. Altogether, this review has been oriented in a way to collocate a collective data starting from the historical perspective of cellulose discovery to modern cellulosic chemistry and its renovation as nanocellulose with recent technological hype for broad spanning applications.


Subject(s)
Cellulose/analogs & derivatives , Nanostructures/chemistry , Printing, Three-Dimensional , Rheology/methods
14.
ACS Appl Mater Interfaces ; 12(35): 39892-39901, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32805809

ABSTRACT

Hydrogels derived from lignin are typically weak and contain only a small amount of lignin, which limits their broad application prospects. In the present work, a novel lignin/poly(N,N-dimethylacrylamide) (PDMA) hydrogel with a high lignin content, superb toughness, and ultrahigh antioxidative performance is constructed by employing a facile dissolve-dry-swell solvent exchange method. Through this process, lignin and PDMA are self-assembled into a multienergy dissipative structure containing rigid lignin-rich domains. Precisely, the PDMA chains both interpenetrated inside and adhered on the surface of these domains through hydrophobic associations. This structure enables the lignin hydrogels to dissipate energy efficiently during the fracture process. At an optimized ultrahigh lignin content of 58% (dry weight basis), the prepared lignin hydrogel exhibited remarkable mechanical properties, such as a high elastic modulus (2.5 MPa), tensile strength (2.5 MPa), and super tensile strain (11.3), and an extremely high fracture energy above 16 000 J m-2. In addition, the tough lignin hydrogel exhibited a commendable antioxidant property and nontoxicity. All these advantageous properties provide the lignin/PDMA hydrogels with the potential for use in biomedical materials applications.

15.
Soft Matter ; 16(20): 4723-4727, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32421136

ABSTRACT

Mechanically robust protein-based hydrogels are strongly desired but their construction remains a significant challenge. In this work, gelatin, together with methacrylic acid, is used to construct a novel hydrogen-bonded hydrogel through a facile low-temperature polymerization and a subsequent dry-swell process. The obtained gel is extremely stiff and tough with a high Young's modulus and a fracture energy of 11 MPa and 8.5 kJ m-2, respectively, which are comparable to the performance of tough synthetic hydrogels, rubber, cartilage, and skin. These gels also show recovery and healing properties as well as biocompatibility and stability in physiological saline solutions. The gel is easy to prepare and exhibits a wide range of functional properties, making it a promising load-bearing material for medical applications.

16.
Nanotechnology ; 31(36): 365101, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32434167

ABSTRACT

Chemotherapy-induced immunogenic cell death (ICD) may offer a strategy to improve the effect of the therapeutic treatment of triple-negative breast cancer (TNBC) by eliciting broad antitumor immunity. However, chemotherapy shows a limited therapeutic effect because of multi-drug resistance and the immunosuppressive tumor microenvironment (TME) of TNBC. The unique pharmacological actions of sunitinib (SUN) indicate its possible synergies with paclitaxel (PTX) to enhance chemo-immunotherapy for TNBC. Here, we prepared a co-delivery platform composed of poly(styrene-co-maleic anhydride) (SMA) via a self-assembly process for a combination of PTX and SUN, which was able to induce a higher synergistic ICD. The nanomicellar delivery of PTX and SUN loaded at an optimal ratio of 1:5 (PTX:SUN) presented the characteristics of an appropriate particle size, long-term stability, and time sequence release which synergistically promoted the apoptosis of MDA-MB-231 tumor cells. Moreover, we demonstrated that the combination of PTX and SUN could significantly induce a synergistic effect because it promoted an ICD response, improved tumor immunogenicity, and regulated immunosuppressive factors in the TME. Overall, PTX and SUN with synergistic effects entrapped in a self-assembly nano-delivery system could offer the potential for clinical applicationof a combination chemo-immunotherapy strategy to improve the effect of the therapeutic treatment of TNBC.


Subject(s)
Antineoplastic Agents/administration & dosage , Paclitaxel/administration & dosage , Sunitinib/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Stability , Drug Synergism , Female , Humans , Immunogenic Cell Death , Maleates/chemistry , Mice , Micelles , Paclitaxel/chemistry , Paclitaxel/pharmacology , Particle Size , Polystyrenes/chemistry , Sunitinib/chemistry , Sunitinib/pharmacology , Xenograft Model Antitumor Assays
17.
ACS Omega ; 3(9): 11759-11769, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459269

ABSTRACT

To increase the biobased content of poly(ethylene terephthalate) (PET), up to 30 wt % poly(lactic acid) (PLA) was blended with PET using twin-screw compounding and injection molding processes. Multifunctional epoxide compatibilizers including a chain extender and an impact toughening agent were used as blend modifiers to improve the poor mechanical properties of PET/PLA blends. The mechanical and thermodynamic performances were investigated along with the morphological features through scanning electron microscopy, atomic force microscopy, and interfacial tension determination. From rheological and differential scanning calorimetry results, it was observed that the molecular weight of both PET and PLA increased with compatibilizers because of epoxide reactions. The toughening agent, poly(ethylene-n-butylene-acrylate-co-glycidyl methacrylate) (EBA-GMA), provided a 292% increase in impact strength over the blend but reduced modulus by 25%. In contrast, 0.7 phr addition of the chain extender, poly(styrene-acrylic-co-glycidyl methacrylate) (SA-GMA), yielded comparable performance to that of neat PET without sacrificing the tensile and flexural properties. When both compatibilizers were present in the blend, the mechanical properties remained relatively unaltered or decreased with increasing EBA-GMA content. The differences in mechanical performance observed were considered in relation to the strengthening mechanism of the two differing compatibilizers and their effects on the miscibility of the blend.

18.
Sensors (Basel) ; 17(10)2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28961223

ABSTRACT

A light-up fluorescent probe for the detection of adenosine was constructed with an AIE (aggregation-induced emission) molecule and a DNA aptamer. The AIE molecule was used as a signal generator, and the DNA aptamer was used as a recognition element for adenosine. The emission of the AIE molecule was due to its intramolecular rotation restriction induced by the aptamer upon binding of adenosine. The optimal component ratio of the probe was AIE molecule / DNA aptamer = 100 (µM/µM). The calibration curve of adenosine detection showed a linear range of 10 pM to 0.5 µM with an R² of 0.996, and the detection limit of the probe was 10 pM. The probe exhibited a good selectivity to adenosine against its analogs (uridine, guanosine, and cytidine). The probe was used to detect adenosine in urine samples, a recovery from 86.8% to 90.0% for the spiked concentrations of adenosine (0.01, 0.05, 0.1 µM). The relative standard deviation from 1.2% to 2.0% was obtained. The intra-day and inter-day tests also showed good precisions, with measurement RSD values of 2.3% and 2.1%, respectively.

19.
Huan Jing Ke Xue ; 38(2): 461-468, 2017 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-29964500

ABSTRACT

Based on environmental statistical data and emission factor, an anthropogenic volatile organic compounds (VOCs) emission inventory was established for the Chang-Zhu-Tan region, and a grid with spatial resolution of 3 km×3 km was built according to the spatial feature data. Ozone formation potential (OFP) and secondary organic aerosol (SOA) formation potential of anthropogenic sources were also estimated. The results showed that the total anthropogenic VOCs emission was about 113.49 kt in Chang-Zhu-Tan region and the main sources were industrial processes, solvent utilization and vehicles with the VOCs emission of 35.88 kt, 28.72 kt and 22.13 kt, respectively. Paving pitch and architecture wall painting accounted for the majority of the solvent utilization and the building materials industry accounted for 75.34% of VOCs emission from the industrial processes. Liling was the largest contributor compared to the other cities in Chang-Zhu-Tan region, where the VOCs emission from these anthropogenic sources in 2014 was 16.58 kt. The total OFP of these sources was 375.33 kt, in which solvent utilization contributed 27.28% and the O3 generative capacity of biomass burning was the largest. Solvent utilization contributed 35.35% to the total SOA formation potentials and its SOA generative capacity was also the largest. The spatial distribution characteristics revealed that the VOCs emission mostly originated from urban area.

20.
Huan Jing Ke Xue ; 37(1): 94-101, 2016 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-27078946

ABSTRACT

Based on the best available activity data and emission factors, an anthropogenic emission inventory of NH3 was established for the Chang-Zhu-Tan region with spatial resolution of 3 km x 3 km. The results showed that the total quantity of NH3 discharged from anthropogenic sources in the Chang-Zhu-Tan region was 7.27 x 10(4) t, and the average intensity of NH3 emission was 2. 59 t x km(-2). The livestock and poultry industry, and the farmland ecosystem, were the major contribution sources of the anthropogenic NH3 emissions, accounting for 58. 60% and 29.73%, respectively. As for NH3 emission from the livestock and poultry industry, the major contributors were beef, laying hen and pork pig, accounting for 26.26%, 21.40% and 18.43%, respectively. In the Chang-Zhu-Tan region, the quantities of NH3 emissions from Ningxiang county, Xiangtan county and Liuyang city were larger than those of the other districts, accounting for 17. 49%, 12. 82% and 12.02%, respectively. The intensities of NH3 emission from Shifeng and Yuetang districts were larger than those from other districts, reaching up to 9.14 t x km(-2) and 5.01 t x km(-2), respectively. The spatial distribution characteristics revealed that the NH3 emission mostly originated from large point sources.


Subject(s)
Agriculture , Air Pollutants/analysis , Ammonia/analysis , Animals , Cattle , Chickens , China , Livestock , Spatial Analysis , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...