Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401074, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697944

ABSTRACT

The backwardness of n-type organic semiconductors still exists compared with the p-type counterparts. Thus, the development of high-performance n-type organic semiconductors is of great importance for organic electronic devices and their integrated circuits. In recent years, azabenzannulated perylene diimide (PDI), as one of immense bay-region-annulated PDI derivatives, has drawn considerable attentions. However, the electronic mobilities of azabenzannulated PDI derivatives are barely satisfactory. In this contribution, the peripheral benzene ring in azabenzannulated PDI 2 was fused to the ortho position by intermolecular C-H arylation cyclization. This endows the resultant azabenzannulated PDI 4 a planar configuration as well as electron deficient pentagonal ring. As a result, the electronic mobility of 4 is almost two orders of magnitude higher than that of the nonfused azabenzannulated PDI 2. This work shall pave a new avenue in elevating the performance of azabenzannulated PDI in organic electronics.

2.
J Am Chem Soc ; 146(19): 13326-13335, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693621

ABSTRACT

A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the µs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.

3.
Front Bioeng Biotechnol ; 12: 1381685, 2024.
Article in English | MEDLINE | ID: mdl-38638320

ABSTRACT

The construction of an antibacterial biological coating on titanium surface plays an important role in the long-term stability of oral implant restoration. Graphene oxide (GO) has been widely studied because of its excellent antibacterial properties and osteogenic activity. However, striking a balance between its biological toxicity and antibacterial properties remains a significant challenge with GO. ε-poly-L-lysine (PLL) has broad-spectrum antibacterial activity and ultra-high safety performance. Using Layer-by-layer self-assembly technology (LBL), different layers of PLL/GO coatings and GO self-assembly coatings were assembled on the surface of titanium sheet. The materials were characterized using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle test. The antibacterial properties of Porphyromonas gingivalis (P.g.) were analyzed through SEM, coated plate experiment, and inhibition zone experiment. CCK-8 was used to determine the cytotoxicity of the material to MC3T3 cells, and zebrafish larvae and embryos were used to determine the developmental toxicity and inflammatory effects of the material. The results show that the combined assembly of 20 layers of GO and PLL exhibits good antibacterial properties and no biological toxicity, suggesting a potential application for a titanium-based implant modification scheme.

4.
J Phys Chem B ; 128(16): 3964-3971, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38602495

ABSTRACT

The properties and formation mechanisms of the triplet state have been widely investigated since they are crucial intermediates in photo functional devices. Specifically, helical PDI dimers, horizontal expanded π-conjugated derivatives of PDI, have shown outstanding performance as electron acceptors in enhancing the performance of photovoltaics. Therefore, the exploration of triplet generation in helical PDI dimers plays a crucial role in understanding the mechanisms and excavating their further application. We make use of Se-annulation to induce intersystem crossing (ISC) in helical PDI dimers and further explore the triplet evolution process systematically as the number of Se atoms increases by transient absorption spectroscopy and the hole-electron analysis method. It shows that the twisted molecular conformation has paved the way for potential ISC in a parent molecule PDI2. The incorporation of Se atoms can result in evident promotion in the efficiency of ISC (ϕTPDI2-2Se = 96.9%) compared to the parent molecule PDI2 (ϕTPDI2 = 26.5%), indicating that chalcogen-annulation is also an efficient strategy in a π-extended system. Our results provide useful insights for understanding the triplet evolution process, which can help broaden the application of the π-extended PDI system into high-performance photovoltaics.

5.
J Phys Chem Lett ; 14(20): 4822-4829, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37191450

ABSTRACT

Bay-annulated indigo (BAI) is a new potential SF-active building block, which has aroused great interest in the design of highly stable singlet fission materials. However, singlet fission of unfunctionalized BAI is inactive due to the inappropriate energy levels. Herein, we seek to develop a new design strategy by introducing the charge transfer interaction to tune the exciton dynamics of BAI derivatives. A new donor-acceptor molecule (TPA-2BAI) and two control molecules (TPA-BAI and 2TPA-BAI) were designed and synthesized to unravel the veil of CT states in tuning the excited-state dynamics of BAI derivatives. Transient absorption spectroscopy studies show that CT states are generated immediately following the excitation. However, the low-lying CT states induced by strong donor-acceptor interactions result in them acting as trap states and inhibiting the SF process. These results show that the low-lying CT state is detrimental to SF and provide insight into the design of CT-mediated BAI-based SF materials.

6.
Chempluschem ; 88(5): e202300108, 2023 May.
Article in English | MEDLINE | ID: mdl-37121887

ABSTRACT

The vinylene-bridged helical perylene diimide (PDI) dimer (PDI2) with a build-in twisted configuration is an alternative building block to the parent PDI for the construction of efficient non-fullerene acceptor (NFAs). Moreover, it has been proved asymmetric strategy plays a vital role in the development of NFAs. Herein, we designed and synthesized a pair of acceptor-donor-acceptor (A-D-A) type PDI2 derivatives, namely IDTIC-PDI and IDT-diPDI2, which contain asymmetric and symmetric end-cap units, respectively. To determine the structure-performance relationships of asymmetric strategy, the organic solar cells (OSCs) based on these two molecules were fabricated and measured. The asymmetric IDTIC-PDI based device exhibits a much higher PCE of 8.23 % than that of symmetric IDT-diPDI2 (5.21 %). These results reveal that symmetry breaking provides an effective way to optimize the photovoltaic performances of PDI2 based OSCs.

7.
Chem Asian J ; 18(3): e202201186, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36529711

ABSTRACT

The vinylene-bridged helical PDI dimer (PDI2) has been an alternative PDI building block for non-fullerene acceptor (NFAs). However, the development of PDI2 derivatives still lag behind, and most of PDI2 derivatives based organic solar cells (OSCs) only achieved a moderate power conversion efficiencies (PCE) of less than 8%. In this contribution, an acceptor-donor-acceptor-donor-acceptor (A-D-A'-D-A) architecture was introduced to facilitate the improvement of photovoltaic properties. Two acceptors named diIDTIC-PDI2 and diFIDTIC-PDI2 were designed and synthesized, in which a PDI2 moiety flanked with two indacenodithiophene (IDT) units was employed as the D-A'-D core and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) or fluorinated IC (IC2F) acted as terminal groups, respectively. The photovoltaic performances of these two acceptors were explored using PM1 as the electron donor. Compared to diIDTIC-PDI2, the fluorinated diFIDTIC-PDI2 based OSCs obtained enhanced photovoltaic performance with the best PCE of 9.77%, a VOC of 0.957 V, JSC of 13.58 mA cm-2 and FF of 75.1%. These results illustrate that engineering terminal groups is a robust strategy of enhancing the efficiency of PDI based acceptors with A-D-A'-D-A architecture.

8.
J Org Chem ; 87(21): 14825-14832, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36261214

ABSTRACT

Preparation of regioisomerically pure 1,6-disubstituted perylene diimide (PDI) is not a trivial task owing to the lack of facile synthetic and separation methodologies for the precursors. Herein, we present a simple synthesis for 1,6-ditriflato-PDI (1,6-diOTf-PDI) using 1,6,9,10-tetrabromo-perylene monoimide 1 as the starting material. The selective methoxylation of 1 at the 1,6-position is the key step. Based on a four-step sequence of selective methoxylation, domino carbonylative amidation, demethylation, and triflation, 1,6-diOTf-PDI can be obtained in a satisfactory yield. Moreover, as a building block, 1,6-diOTf-PDIa can readily undergo Suzuki and Sonogashira cross-coupling reactions.

9.
PeerJ ; 10: e14238, 2022.
Article in English | MEDLINE | ID: mdl-36299505

ABSTRACT

Purpose: This study evaluated the combined effects of Carbodiimide (EDC) and ethanol-wet bonding (EWB) pretreatment on the bond strength and resin-dentin surface. Methods: Phosphoric acid-etched dentin specimens were randomly divided into five groups based on the following pretreatments: deionized water (control), EWB, 0.3M EDC in water (EDCw), EDC water solution combined EWB (EDCw + EWB), and 0.3M EDC in ethanol (EDCe). A scanning electron microscope (SEM) was used to observe the morphology of collagen fibrils on the demineralized dentin matrix in each group after pretreatment. The adhesives Prime & Bond NT (PB) (Dentsply De trey, Konstanz, Germany) or Single bond 2 (SB) (3M ESPE, St. Paul, MN, USA) was applied after pretreatments, and a confocal laser scanning microscope (CLSM) was used to evaluate the quality of resin tags. The degree of conversion (DC) of the adhesive was investigated by Fourier transform infrared spectroscopy (ATR-FTIR). The dentin was first bonded with resin and bathed in water at 37 °C for 24 h. Half of them were subjected to 10, 000 cycles in a thermocycler between 5 °C and 55 °C before a microshear bond strength (µSBS) test. The statistical methods were Analysis of Variance (ANOVA) and a Tukey post hoc test at α = 0.05. Results: The µSBS was significantly affected by pretreatments (p < 0.001), adhesives (p < 0.001), and aging conditions (p < 0.001) as revealed by the three-way ANOVA. The EDCw, EDCw + EWB, and EDCe groups significantly increased the µSBS; the EDCw + EWB and EDCe groups produced the highest µSBS. In the EDC-containing groups, the SEM showed at the collagen fibrils in the dentin matrix formed a three-dimensional network structure in the tubules after cross-linking into sheets, and the hybrid layer formed thicker resin tags under a CLSM. In the EDC-containing groups, the CLSM observed an increase in the length of resin tags. PB showed a higher DC and bonding strength than SB, and the five pretreatment groups tested did not affect the DC of the two adhesives. Conclusions: In etch-and-rinse bonding system, EDC combined with EWB pretreatment can improve the quality of the hybrid layer and enhance the mechanical properties of demineralized dentin matrix. Pretreatment with EDC-ethanol solution may be a new clinically friendly option for enhancing dentin bonding durability.


Subject(s)
Carbodiimides , Ethanol , Ethanol/pharmacology , Carbodiimides/analysis , Resin Cements/analysis , Surface Properties , Dentin-Bonding Agents/analysis , Dentin/chemistry , Materials Testing , Acid Etching, Dental/methods , Water/analysis , Adhesives/analysis , Collagen/analysis
10.
Front Genet ; 13: 969412, 2022.
Article in English | MEDLINE | ID: mdl-36035120

ABSTRACT

Proteins need to interact with different ligands to perform their functions. Among the ligands, the metal ion is a major ligand. At present, the prediction of protein metal ion ligand binding residues is a challenge. In this study, we selected Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+ and Mg2+ metal ion ligands from the BioLip database as the research objects. Based on the amino acids, the physicochemical properties and predicted structural information, we introduced the disorder value as the feature parameter. In addition, based on the component information, position weight matrix and information entropy, we introduced the propensity factor as prediction parameters. Then, we used the deep neural network algorithm for the prediction. Furtherly, we made an optimization for the hyper-parameters of the deep learning algorithm and obtained improved results than the previous IonSeq method.

11.
J Phys Chem B ; 126(20): 3758-3767, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35559687

ABSTRACT

Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.


Subject(s)
Imides , Perylene , Imides/chemistry , Perylene/analogs & derivatives , Perylene/chemistry , Solvents , Spectrum Analysis
12.
Comput Biol Chem ; 98: 107693, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35605305

ABSTRACT

Accurately identifying protein-metal ion ligand binding residues is the key to study protein functions. Because the number of binding residues and non-binding residues is significantly imbalanced, false positives is hard to be eliminated from the binding residues prediction result. Therefore, identification of protein-metal ion ligand binding residues remains challenging. In this paper, the binding site of 7 metal ions (Ca2+, Mg2+, Zn2+, Fe3+, Mn2+, Cu2+ and Co2+) were used as the objects of the study. Besides generally adopted parameters: amino acids and predicted secondary structure information, we creatively introduced ten orthogonal properties as a parameter. These orthogonal properties are clustering of 188 physical and chemical characteristics that can be used to describe three-dimension structural information. With the optimized parameters, we used the Random Forest algorithm to predict ion ligand binding residues. The proposed method obtained good prediction results with the MCC values of Mg2+, Ca2+ and Zn2+ reaching 0.255, 0.254, 0.540, respectively. Comparing to the IonSeq method, the method developed in this paper has advantages on the binding residues prediction of some ions.


Subject(s)
Algorithms , Proteins , Binding Sites , Ions/chemistry , Ligands , Metals , Protein Binding , Proteins/chemistry
13.
Dent Mater J ; 41(5): 660-667, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35584935

ABSTRACT

The study evaluated the effect of sodium hypochlorite (NaOCl) treatment on fluorotic enamel bonding of four adhesive systems. They were Single Bond 2 (SB2), Prime&Bond NT (PBN), Clearfil SE Bond (CSB), and Single Bond Universal (SBU). One hundred eighteen extracted moderate fluorotic molars were divided into eight groups according to NaOCl pretreatment and four adhesive systems. The microshear bond strength (µSBS), etching pattern, and penetration depth (PD) were observed. The statistical method was two-way ANOVA and least significant difference (LSD) test (α=0.05). The application of NaOCl significantly increased the µSBS of PBN and SBU (p<0.05). The enamel-etching pattern of CSB and SBU was deeper under SEM. A noticeable increase of PD was in SB2 and SBU after the application of NaOCl (p<0.05). Pretreatment of 5.25% NaOCl for the 60 s can increase µSBS of PBN and SBU, PD of SB2 and SBU, and improve enamel-etching pattern of CSB and SBU to fluorotic enamel.


Subject(s)
Dental Bonding , Bisphenol A-Glycidyl Methacrylate , Dental Bonding/methods , Dental Cements/chemistry , Dental Enamel , Dentin-Bonding Agents/chemistry , Materials Testing , Resin Cements/chemistry , Shear Strength , Sodium Hypochlorite/pharmacology
14.
BMC Bioinformatics ; 22(Suppl 12): 324, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35045825

ABSTRACT

BACKGROUND: Alkaline earth metal ions are important protein binding ligands in human body, and it is of great significance to predict their binding residues. RESULTS: In this paper, Mg2+ and Ca2+ ligands are taken as the research objects. Based on the characteristic parameters of protein sequences, amino acids, physicochemical characteristics of amino acids and predicted structural information, deep neural network algorithm is used to predict the binding sites of proteins. By optimizing the hyper-parameters of the deep learning algorithm, the prediction results by the fivefold cross-validation are better than those of the Ionseq method. In addition, to further verify the performance of the proposed model, the undersampling data processing method is adopted, and the prediction results on independent test are better than those obtained by the support vector machine algorithm. CONCLUSIONS: An efficient method for predicting Mg2+ and Ca2+ ligand binding sites was presented.


Subject(s)
Algorithms , Neural Networks, Computer , Binding Sites , Humans , Ligands , Protein Binding
15.
ACS Appl Mater Interfaces ; 13(14): 16396-16406, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33793194

ABSTRACT

Organic redox-active molecules have been identified as promising cathodes for practical usage of potassium-ion batteries (PIBs) but still struggle with serious dissolution problems and sluggish kinetic properties. Herein, we propose a pseudocapacitance-dominated novel insoluble carbonyl-based cathode, [2,6-di[1-(perylene-3,4,9,10-tetracarboxydiimide)]anthraquinone, AQ-diPTCDI], which possesses high reversible capacities of 150 mAh g-1, excellent cycle stability with capacity retention of 88% over 2000 cycles, and fast kinetic properties. The strong intermolecular interactions of AQ-diPTCDI and in situ formed cathode electrolyte interphase films support it against the dissolution problem. The high capacitive-like contribution in capacities and fast potassium-ion diffusion enhance its reaction kinetics. Moreover, a symmetric organic potassium-ion battery (OPIB) based on AQ-diPTCDI electrodes also exhibits outstanding K-storage capability. These results suggest that AQ-diPTCDI is a promising organic cathode for OPIBs and provide a practicable route to realize high-performance K storage.

16.
Front Genet ; 12: 793800, 2021.
Article in English | MEDLINE | ID: mdl-35058970

ABSTRACT

The realization of many protein functions is inseparable from the interaction with ligands; in particular, the combination of protein and metal ion ligands performs an important biological function. Currently, it is a challenging work to identify the metal ion ligand-binding residues accurately by computational approaches. In this study, we proposed an improved method to predict the binding residues of 10 metal ion ligands (Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+). Based on the basic feature parameters of amino acids, and physicochemical and predicted structural information, we added another two features of amino acid correlation information and binding residue propensity factors. With the optimized parameters, we used the GBM algorithm to predict metal ion ligand-binding residues. In the obtained results, the Sn and MCC values were over 10.17% and 0.297, respectively. Besides, the Sn and MCC values of transition metals were higher than 34.46% and 0.564, respectively. In order to test the validity of our model, another method (Random Forest) was also used in comparison. The better results of this work indicated that the proposed method would be a valuable tool to predict metal ion ligand-binding residues.

17.
ACS Appl Mater Interfaces ; 12(8): 9528-9536, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32009378

ABSTRACT

Perylene diimide (PDI) and the vinylene-bridged helical PDI oligomers are versatile building blocks for constructing nonfullerene acceptors (NFAs). In this contribution, a benzene-cored star-shaped NFA, namely, TPDI2-Se, was designed and synthesized for organic solar cells (OSCs). The NFA with smaller π-conjugated blades, namely, TPDI-Se, was synthesized for comparison. Using the commercially available PTB7-Th as the electron donor, the best power conversion efficiency (PCE) of 3.62% was obtained for TPDI-Se-based OSCs. However, a much higher PCE of 8.59% was achieved for TPDI2-Se-based devices owing to the π-extension in the peripheral panels. Moreover, the photovoltaic performance of TPDI2-Se-based OSCs is also superior to those of the parent NFA TPDI2 (PCE of 7.84%)- and the blade moiety PDI2-Se (PCE of 6.61%)- based ones. Additionally, a remarkable short-circuit current (Jsc) value of 17.21 mA/cm2 was obtained for TPDI2-Se-based OSCs, which is among the highest Jsc values reported in PDI-based OSCs. These results argue that the so-called "three in one" molecule design strategy of π-extension, selenium incorporation, and trimerization offers a robust approach to constructing high-performance PDI-based NFAs.

18.
Chemistry ; 25(52): 12137-12144, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31276238

ABSTRACT

Isomerism heavily influences the optoelectronic properties and self-assembly behavior of compounds and subsequently affects their device performance. Herein, two pairs of isomeric perylene diimide (PDI) dimers, PDI and PDI2, were designed and synthesized. The electron-deficient 9,10-anthraquinone group was employed as the bridge, and thus, the resultant dimers exhibited an acceptor-acceptor-acceptor (A-A-A) structure. To determine the isomeric effects on the optoelectronic properties and photovoltaic performance of these dimers, their absorptivity, luminescence, and redox behavior were studied. Bulk heterojunction organic solar cells based on these four dimers were fabricated and measured. The two PDI dimers exhibited clear differences in photovoltaic performance, whereas the two PDI2 analogues showed similar power conversion efficiencies (PCEs). The PCEs of the two PDI2 dimers are much higher than those of the PDI dimers. These results illustrate that the isomeric effect of PDI dimers is much larger than that of PDI2 dimers on the device performance, and proper expansion of conjugation could improve the device performance.


Subject(s)
Anthraquinones/chemistry , Imides/chemistry , Perylene/analogs & derivatives , Dimerization , Electronics , Isomerism , Oxidation-Reduction , Perylene/chemistry , Solar Energy
19.
Water Sci Technol ; 76(7-8): 1676-1686, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28991784

ABSTRACT

Magnetic imprinted N-doped P25/Fe3O4-graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe3O4-GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.


Subject(s)
Graphite/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Adsorption , Catalysis , Coloring Agents , Congo Red/chemistry , Magnetics , Molecular Imprinting , Wastewater , X-Ray Diffraction
20.
J Sep Sci ; 40(2): 424-430, 2017 01.
Article in English | MEDLINE | ID: mdl-27860252

ABSTRACT

A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometry, X-ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2-97.0%, and the limit of detection was 0.075 µg/kg. Relative standard deviations of intra- and inter-day precisions were in the range of 1.7-2.9% and 3.4-5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples.


Subject(s)
Chemistry Techniques, Analytical/methods , Ivermectin/analogs & derivatives , Muscle, Skeletal/chemistry , Polymers/chemical synthesis , Adsorption , Animals , Fishes , Ivermectin/analysis , Ivermectin/isolation & purification , Limit of Detection , Molecular Imprinting , Nanotubes, Carbon/chemistry , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...