Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 75(3): 1036-1050, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37831920

ABSTRACT

Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Anions/metabolism , Sulfates/metabolism , Glutathione/metabolism , Sulfur/metabolism , Phosphates/metabolism , Glucosinolates , Gene Expression Regulation, Plant
2.
New Phytol ; 238(5): 2159-2174, 2023 06.
Article in English | MEDLINE | ID: mdl-36866959

ABSTRACT

Hydroxy- and carboxyblumenol C-glucosides specifically accumulate in roots and leaves of plants harboring arbuscular mycorrhizal fungi (AMF). To explore blumenol function in AMF relationships, we silenced an early key-gene in blumenol biosynthesis, CCD1 (carotenoid cleavage dioxygenase 1), in the ecological model plant, Nicotiana attenuata, and analyzed whole-plant performance in comparison with control and CCaMK-silenced plants, unable to form AMF associations. Root blumenol accumulations reflected a plant's Darwinian fitness, as estimated by capsule production, and were positively correlated with AMF-specific lipid accumulations in roots, with relationships that changed as plants matured when grown without competitors. When grown with wild-type competitors, transformed plants with decreased photosynthetic capacity or increased carbon flux to roots had blumenol accumulations that predicted plant fitness and genotype trends in AMF-specific lipids, but had similar levels of AMF-specific lipids between competing plants, likely reflecting AMF-networks. We propose that when grown in isolation, blumenol accumulations reflect AMF-specific lipid allocations and plant fitness. When grown with competitors, blumenol accumulations predict fitness outcomes, but not the more complicated AMF-specific lipid accumulations. RNA-seq analysis provided candidates for the final biosynthetic steps of these AMF-indicative blumenol C-glucosides; abrogation of these steps will provide valuable tools for understanding blumenol function in this context-dependent mutualism.


Subject(s)
Mycorrhizae , Plant Roots/microbiology , Symbiosis , Plants/microbiology , Lipids
3.
Mol Plant ; 15(8): 1329-1346, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35780296

ABSTRACT

The plant hormone jasmonate (JA) regulates plant immunity and adaptive growth by orchestrating a genome-wide transcriptional program. Key regulators of JA-responsive gene expression include the master transcription factor MYC2, which is repressed by the conserved Groucho/Tup1-like corepressor TOPLESS (TPL) in the resting state. However, the mechanisms underlying TPL-mediated transcriptional repression of MYC2 activity and hormone-dependent switching between repression and de-repression remain enigmatic. Here, we report the regulation of TPL activity and JA signaling by reversible acetylation of TPL. We found that the histone acetyltransferase GCN5 could mediate TPL acetylation, which enhances its interaction with the NOVEL-INTERACTOR-OF-JAZ (NINJA) adaptor and promotes its recruitment to MYC2 target promoters, facilitating transcriptional repression. Conversely, TPL deacetylation by the histone deacetylase HDA6 weakens TPL-NINJA interaction and inhibits TPL recruitment to MYC2 target promoters, facilitating transcriptional activation. In the resting state, the opposing activities of GCN5 and HDA6 maintain TPL acetylation homeostasis, promoting transcriptional repression activity of TPL. In response to JA elicitation, HDA6 expression is transiently induced, resulted in decreased TPL acetylation and repressor activity, thereby transcriptional activation of MYC2 target genes. Thus, the GCN5-TPL-HDA6 module maintains the homeostasis of acetylated TPL, thereby determining the transcriptional state of JA-responsive genes. Our findings uncovered a mechanism by which the TPL corepressor activity in JA signaling is actively tuned in a rapid and reversible manner.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Acetylation , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Co-Repressor Proteins/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Histone Deacetylases/metabolism , Oxylipins/metabolism , Repressor Proteins/metabolism
4.
EMBO J ; 39(20): e105047, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32926464

ABSTRACT

Proper regulation of homeotic gene expression is critical for stem cell fate in both plants and animals. In Arabidopsis thaliana, the WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in a group of root stem cell organizer cells called the quiescent center (QC) and plays a central role in QC specification. Here, we report that the SEUSS (SEU) protein, homologous to the animal LIM-domain binding (LDB) proteins, assembles a functional transcriptional complex that regulates WOX5 expression and QC specification. SEU is physically recruited to the WOX5 promoter by the master transcription factor SCARECROW. Subsequently, SEU physically recruits the SET domain methyltransferase SDG4 to the WOX5 promoter, thus activating WOX5 expression. Thus, analogous to its animal counterparts, SEU acts as a multi-adaptor protein that integrates the actions of genetic and epigenetic regulators into a concerted transcriptional program to control root stem cell organizer specification.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Homeodomain Proteins/metabolism , Plant Roots/metabolism , Stem Cells/metabolism , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Differentiation/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mutation , Promoter Regions, Genetic , Protein Domains , Signal Transduction , Stem Cell Niche/genetics , Stem Cell Niche/physiology
5.
Bio Protoc ; 10(5): e3538, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-33659512

ABSTRACT

Plant-insect interaction is an important field for studying plant immunity. The beet armyworm, Spodoptera exigua, is one of the best-known agricultural pest insects and is usually used to study plant interactions with chewing insects. Here, we describe a protocol for insect feeding assays with Spodoptera exigua lavae using model host plant Arabidopsis thaliana, which is simple and easy to conduct, and can be used to evaluate the effect of host genes on insect growth and thus to study plant resistance to chewing insects.

6.
Plant Cell ; 31(9): 2187-2205, 2019 09.
Article in English | MEDLINE | ID: mdl-31320481

ABSTRACT

Groucho/Thymidine uptake 1 (Gro/Tup1) family proteins are evolutionarily conserved transcriptional coregulators in eukaryotic cells. Despite their prominent function in transcriptional repression, little is known about their role in transcriptional activation and the underlying mechanism. Here, we report that the plant Gro/Tup1 family protein LEUNIG_HOMOLOG (LUH) activates MYELOCYTOMATOSIS2 (MYC2)-directed transcription of JAZ2 and LOX2 via the Mediator complex coactivator and the histone acetyltransferase HAC1. We show that the Mediator subunit MED25 physically recruits LUH to MYC2 target promoters that then links MYC2 with HAC1-dependent acetylation of Lys-9 of histone H3 (H3K9ac) to activate JAZ2 and LOX2 Moreover, LUH promotes hormone-dependent enhancement of protein interactions between MYC2 and its coactivators MED25 and HAC1. Our results demonstrate that LUH interacts with MED25 and HAC1 through its distinct domains, thus imposing a selective advantage by acting as a scaffold for MYC2 activation. Therefore, the function of LUH in regulating jasmonate signaling is distinct from the function of TOPLESS, another member of the Gro/Tup1 family that represses MYC2-dependent gene expression in the resting stage.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arsenate Reductases/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Transcriptional Activation/physiology , Acetylation , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arsenate Reductases/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Histones , Lipoxygenases/genetics , Lipoxygenases/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation/genetics
7.
Proc Natl Acad Sci U S A ; 114(42): E8930-E8939, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28973940

ABSTRACT

Jasmonoyl-isoleucine (JA-Ile), the active form of the plant hormone jasmonate (JA), is sensed by the F-box protein CORONATINE INSENSITIVE 1 (COI1), a component of a functional Skp-Cullin-F-box E3 ubiquitin ligase complex. Sensing of JA-Ile by COI1 rapidly triggers genome-wide transcriptional changes that are largely regulated by the basic helix-loop-helix transcription factor MYC2. However, it remains unclear how the JA-Ile receptor protein COI1 relays hormone-specific regulatory signals to the RNA polymerase II general transcriptional machinery. Here, we report that the plant transcriptional coactivator complex Mediator directly links COI1 to the promoters of MYC2 target genes. MED25, a subunit of the Mediator complex, brings COI1 to MYC2 target promoters and facilitates COI1-dependent degradation of jasmonate-ZIM domain (JAZ) transcriptional repressors. MED25 and COI1 influence each other's enrichment on MYC2 target promoters. Furthermore, MED25 physically and functionally interacts with HISTONE ACETYLTRANSFERASE1 (HAC1), which plays an important role in JA signaling by selectively regulating histone (H) 3 lysine (K) 9 (H3K9) acetylation of MYC2 target promoters. Moreover, the enrichment and function of HAC1 on MYC2 target promoters depend on COI1 and MED25. Therefore, the MED25 interface of Mediator links COI1 with HAC1-dependent H3K9 acetylation to activate MYC2-regulated transcription of JA-responsive genes. This study exemplifies how a single Mediator subunit integrates the actions of both genetic and epigenetic regulators into a concerted transcriptional program.


Subject(s)
Arabidopsis Proteins/metabolism , Chromatin/genetics , Nuclear Proteins/metabolism , Acetylation , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arsenate Reductases/genetics , Arsenate Reductases/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Co-Repressor Proteins , Cyclopentanes/metabolism , DNA-Binding Proteins , Gene Expression Regulation, Plant , Histones/metabolism , Lysine/metabolism , Nuclear Proteins/genetics , Oxylipins/metabolism , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...