Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Photochem Photobiol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866726

ABSTRACT

Protoporphyrin IX (PpIX)-based photodynamic therapy (PDT) has shown limited efficacy in nonmuscle-invasive bladder cancer (NMIBC). To improve PDT efficacy, we developed singlet oxygen-cleavable prodrugs. These prodrugs, when combined with PpIX-PDT, induce cancer cell death through both PDT and drug release mechanisms. Inhibition of PpIX efflux was reported to be an effective strategy to improve PpIX-PDT in certain cancer cells. Our main goal was to investigate whether adding an efflux inhibitor to the combination of PpIX and prodrugs can improve the PpIX levels in bladder cancer cells and the release of active drugs, thus improving the overall efficacy of the treatment. We treated bladder cancer cell lines with lapatinib and evaluated intracellular PpIX fluorescence, finding significantly increased accumulation. Combining lapatinib with prodrugs led to significantly reduced cell viability compared to prodrugs or PpIX-PDT alone. The effect of lapatinib depended on the expression level of the efflux pump in bladder cancer cells. Interestingly, lapatinib increased paclitaxel (PTX) prodrug uptake by threefold compared to prodrug alone. Adding an efflux inhibitor (e.g., lapatinib) into bladder instillation solutions could be a straightforward and effective strategy for NMIBC treatment, particularly in tumors expressing efflux pumps, with the potential for clinical translation.

2.
Photochem Photobiol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533776

ABSTRACT

It has been 30 years since Photofrin-PDT was approved for the treatment of bladder cancer in Canada. However, Photofrin-PDT failed to gain popularity due to bladder complications. The PDT with red light and IV-administered Photofrin could permanently damage the bladder muscle. We have been developing a new combination strategy of PpIX-PDT with singlet oxygen-cleavable prodrugs for NMIBC with minimal side effects, avoiding damage to the bladder muscle layer. PpIX can be excited by either green (532 nm) or red (635 nm) light. Red light could be more efficacious in vivo due to its deeper tissue penetration than green light. Since HAL preferentially produces PpIX in tumors, we hypothesized that illuminating PpIX with red light might spare the muscle layer. PpIX-PDT was used to compare green and red laser efficacy in vitro and in vivo. The IC50 of in vitro PpIX-PDT was 18 mW/cm2 with the red laser and 22 mW/cm2 with the green laser. The in vivo efficacy of the red laser with 50, 75, and 100 mW total dose was similar to the same dose of green laser in reducing tumor volume. Combining PpIX-PDT with prodrugs methyl-linked mitomycin C (Mt-L-MMC) and rhodamine-linked SN-38 (Rh-L-SN-38) significantly improved efficacy (tumor volume comparison). PpIX-PDT or PpIX-PDT + prodrug combination did not cause muscle damage in histological analysis. Overall, a combination of PpIX-PDT and prodrug with 635 nm laser is promising for non-muscle invasive bladder cancer treatment.

3.
Photochem Photobiol ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433310

ABSTRACT

Mitochondria play an essential role in cancer treatment by providing apoptotic signals. Hexyl aminolevulinate, an FDA-approved diagnosis for non-muscle invasive bladder cancer, induces the production of protoporphyrin IX (PpIX) preferentially by mitochondria in cancer cells. Photosensitizer PpIX upon illumination can release active chemotherapy drugs from singlet oxygen-activatable prodrugs. Prodrugs placed close enough to PpIX formed in mitochondria can improve the antitumor efficiency of PpIX-PDT. The preferred uptake of prodrugs by cancer cells and tumors can further enhance the selective damage of cancer cells over non-cancer cells and surrounding normal tissues. Mitochondriotropic prodrugs of anticancer drugs, such as paclitaxel and SN-38, were synthesized using rhodamine, a mitochondrial-targeting moiety. In vitro, the mitochondrial targeting helped achieve preferential cellular uptake in cancer cells. In RT112 cells (human bladder cancer cells), intracellular prodrug concentrations were 2-3 times higher than the intracellular prodrug concentrations in BdEC cells (human bladder epithelial cells), after 2 h incubation. In an orthotopic rat bladder tumor model, mitochondria-targeted prodrugs achieved as much as 34 times higher prodrug diffusion in the tumor area compared to the nontumor bladder area. Overall, mitochondria targeting made prodrugs more effective in targeting cancer cells and tumors over non-tumor areas, thereby reducing nonspecific toxicity.

4.
Photochem Photobiol ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37469327

ABSTRACT

Photodynamic therapy (PDT) initially employed red light, which caused some patients to experience permanent bladder contractions. PDT using the FDA-approved drug hexaminolevulinate (HAL), which produces protoporphyrin IX (PpIX) in the tumor, showed some promise but has low efficacy in treating non-muscle-invasive bladder cancer (NMIBC). We developed singlet oxygen-activatable prodrugs of two anticancer drugs, paclitaxel and mitomycin C, to enhance the antitumor effect of PpIX-PDT without producing systemic side effects, by promoting only local release of the active chemotherapeutic agent. Orthotopic NMIBC model was used to compare the efficacy of prodrugs only, PpIX-PDT, and prodrugs + PpIX-PDT. 532 nm laser with a total power of 50 mW for 20 min (60 J, single treatment) was used with HAL and prodrugs. Histology and microscopic methods with image analysis were used to evaluate the tumor staging, antitumor efficacy, and local toxicity. Prodrug + PpIX-PDT produced superior antitumor efficacy than PpIX-PDT alone with statistical significance. Both PpIX-PDT alone and combination therapy resulted in mild damage to the bladder epithelium in the normal bladder area with no apparent damage to the muscle layer. Overall, SO-cleavable prodrugs improved the antitumor efficacy of PpIX-PDT without causing severe and permanent damage to the bladder muscle layer.

5.
Bioorg Med Chem Lett ; 92: 129406, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37423504

ABSTRACT

Gamma-glutamyl transferase 1 (GGT1) is a critical enzyme involved in the hydrolysis and/or transfer of gamma-glutamyl groups of glutathione, which helps maintain cysteine levels in plasma. In this study, we synthesized L-ABBA analogs to investigate their inhibitory effect on GGT1 hydrolysis and transpeptidase activity, with the goal of defining the pharmacophore of L-ABBA. Our structure-activity relationship (SAR) study revealed that an α-COO- and α-NH3+ group, as well as a two-CH2 unit distance between α-C and boronic acid, are essential for the activity. The addition of an R (alkyl) group at the α-C reduced the activity of GGT1 inhibition, with L-ABBA being the most potent inhibitor among the analogs. Next, we investigated the impact of L-ABBA on plasma levels of cysteine and GSH species, with the expectation of observing reduced cysteine levels and enhanced GSH levels due to its GGT1 inhibition. We administered L-ABBA intraperitoneally and determined the plasma levels of cysteine, cystine, GSH, and GSSG using LCMS. Our results showed time- and dose-dependent L-ABBA changes in total plasma cysteine and GSH levels. This study is the first to demonstrate the regulation of plasma thiol species upon GGT1 inhibition, with plasma cystine levels reduced by up to âˆ¼ 75 % with L-ABBA (0.3 mg/dose). Cancer cells are highly dependent on the uptake of cysteine from plasma for maintaining high levels of intracellular glutathione. Thus, our findings suggest that GGT1 inhibitors, such as L-ABBA, have the potential to be used in GSH reduction thereby inducing oxidative stress in cancer cells and reducing their resistance to many chemotherapeutic agents.

6.
Photochem Photobiol ; 99(2): 420-436, 2023 03.
Article in English | MEDLINE | ID: mdl-36138552

ABSTRACT

Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.


Subject(s)
Photochemotherapy , Prodrugs , Urinary Bladder Neoplasms , Humans , Photosensitizing Agents/therapeutic use , Aminolevulinic Acid/therapeutic use , Photochemotherapy/methods , Protoporphyrins , Urinary Bladder Neoplasms/drug therapy
7.
Bioorg Med Chem ; 73: 116986, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36208545

ABSTRACT

Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects. L-2-amino-4­boronobutanoic acid (l-ABBA), a glutamate analog, is the most potent GGT1 inhibitor in vitro. In this study, we have solved the crystal structure of human GGT1 (hGGT1) with ABBA bound in the active site. The structure was interrogated to identify interactions between the enzyme and the inhibitor. Based on these data, a series of novel ABBA analogs were designed and synthesized. Their inhibitory activity against the hydrolysis and transpeptidation activities of hGGT1 were determined. The lead compounds were crystalized with hGGT1 and the structures solved. The kinetic data and structures of the complexes provide new insights into the critical role of protein structure dynamics in developing compounds for inhibition of hGGT1.


Subject(s)
Boron Compounds , gamma-Glutamyltransferase , Catalytic Domain , Glutamic Acid , Humans , gamma-Glutamyltransferase/metabolism
9.
Photochem Photobiol ; 98(2): 389-399, 2022 03.
Article in English | MEDLINE | ID: mdl-34970997

ABSTRACT

We established a light-activatable prodrug strategy that produces the combination effect of photodynamic therapy (PDT) and site-specific chemotherapy. Prodrugs are activated by singlet oxygen (SO), generated from PS and visible or near IR light, in either intra- or inter-molecular manner. The goal of this study is to evaluate cytotoxic effects of nonmitochondria-targeted prodrugs of a number of anticancer drugs with different mechanisms of action. They were tested in both 2D and 3D in vitro conditions via inter-molecular activation of prodrugs by SO generated in mitochondria by protoporphyrin IX-PDT (PpIX-PDT). Prodrugs of anticancer drugs (paclitaxel, SN-38, combretastatin A4 and mitomycin C) were synthesized using facile and high-yielding reactions. Nonmitochondria-targeted prodrugs showed limited dark toxicity while all of them showed greatly enhanced phototoxicity compared to PpIX-PDT in the 2D culture model. Prodrugs generated up to about 95% cell killing at 2.5 µM when administered with hexyl-aminolevulinate (HAL) to produce Protoporphyrin IX in cancer cells in both 2D monolayer and 3D spheroids model. The data demonstrate that mitochondria-targeting of prodrugs is not fully essential for our inter-molecular activation prodrug strategy. The prodrug strategy also worked for anticancer drugs with diverse MOAs.


Subject(s)
Antineoplastic Agents , Photochemotherapy , Prodrugs , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Irinotecan , Mitomycin , Paclitaxel/pharmacology , Photosensitizing Agents/pharmacology , Prodrugs/pharmacology , Singlet Oxygen
10.
J Biol Chem ; 296: 100066, 2021.
Article in English | MEDLINE | ID: mdl-33187988

ABSTRACT

Overexpression of γ-glutamyl transpeptidase (GGT1) has been implicated in an array of human diseases including asthma, reperfusion injury, and cancer. Inhibitors are needed for therapy, but development of potent, specific inhibitors of GGT1 has been hampered by a lack of structural information regarding substrate binding and cleavage. To enhance our understanding of the molecular mechanism of substrate cleavage, we have solved the crystal structures of human GGT1 (hGGT1) with glutathione (a substrate) and a phosphate-glutathione analog (an irreversible inhibitor) bound in the active site. These are the first structures of any eukaryotic GGT with the cysteinylglycine region of the substrate-binding site occupied. These structures and the structure of apo-hGGT reveal movement of amino acid residues within the active site as the substrate binds. Asn-401 and Thr-381 each form hydrogen bonds with two atoms of GSH spanning the γ-glutamyl bond. Three different atoms of hGGT1 interact with the carboxyl oxygen of the cysteine of GSH. Interactions between the enzyme and substrate change as the substrate moves deeper into the active site cleft. The substrate reorients and a new hydrogen bond is formed between the substrate and the oxyanion hole. Thr-381 is locked into a single conformation as an acyl bond forms between the substrate and the enzyme. These data provide insight on a molecular level into the substrate specificity of hGGT1 and provide an explanation for seemingly disparate observations regarding the enzymatic activity of hGGT1 mutants. This knowledge will aid in the design of clinically useful hGGT1 inhibitors.


Subject(s)
Dipeptides/metabolism , Enzyme Inhibitors/metabolism , gamma-Glutamyltransferase/antagonists & inhibitors , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dipeptides/chemistry , Humans , Models, Molecular , Protein Conformation , gamma-Glutamyltransferase/chemistry , gamma-Glutamyltransferase/metabolism
11.
Photochem Photobiol ; 96(3): 668-679, 2020 05.
Article in English | MEDLINE | ID: mdl-31883393

ABSTRACT

We demonstrated that a large primary and a small untreated distant breast cancer could be controlled by local treatment with our light-activatable paclitaxel (PTX) prodrug. We hypothesized that the treated tumor would be damaged by the combinational effects of photodynamic therapy (PDT) and locally released PTX and that the distant tumor would be suppressed by systemic antitumor effects. Syngeneic rat breast cancer models (single- and two-tumor models) were established on Fischer 344 rats by subcutaneous injection of MAT B III cells. The rats were injected with PTX prodrug (dose: 1 umole kg-1 , i.v.), and tumors were treated with illumination using a 690-nm laser (75 or 140 mW cm-1 for 30 min, cylindrical light diffuser, drug-light interval [DLI] 9 h). Larger tumors (~16 mm) were effectively ablated (100%) without recurrence for >90 days. All cured rats rejected rechallenged tumor for up to 12 months. In the two-tumor model, the treatment of the local large tumor (~16 mm) also cured the untreated tumor (4-6 mm) through adaptive immune activation. This is our first demonstration that local treatment with our PTX prodrug produces systemic antitumor effects. Further investigations are warranted to understand mechanisms and optimal conditions to achieve clinically translatable systemic antitumor effects.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/drug therapy , Paclitaxel/therapeutic use , Photochemotherapy/methods , Prodrugs/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Disease Models, Animal , Female , Humans , Paclitaxel/administration & dosage , Paclitaxel/pharmacokinetics , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Rats , Rats, Inbred F344
12.
J Clin Med ; 8(12)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847080

ABSTRACT

Photodynamic therapy (PDT) has become an effective treatment for certain types of solid tumors. The combination of PDT with other therapies has been extensively investigated in recent years to improve its effectiveness and expand its applications. This focused review summarizes the development of a prodrug system in which anticancer drugs are activated locally at tumor sites during PDT treatment. The development of a singlet-oxygen-sensitive linker that can be conveniently conjugated to various drugs and efficiently cleaved to release intact drugs is recapitulated. The initial design of prodrugs, preliminary efficacy evaluation, pharmacokinetics study, and optimization using quantitative systems pharmacology is discussed. Current treatment optimization in animal models using physiologically based a pharmacokinetic (PBPK) modeling approach is also explored.

13.
J Control Release ; 308: 86-97, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31299262

ABSTRACT

Photodynamic therapy (PDT) is a clinically approved therapeutic modality to treat certain types of cancers. However, incomplete ablation of tumor is a challenge. Visible and near IR-activatable prodrug, exhibiting the combined effects of PDT and local chemotherapy, showed better efficacy than PDT alone, without systemic side effects. Site-specifically released chemotherapeutic drugs killed cancer cells surviving from rapid PDT damage via bystander effects. Recently, we developed such a paclitaxel (PTX) prodrug that targets folate receptors. The goals of this study were to determine the optimal treatment conditions, based on modeling, for maximum antitumor efficacy in terms of drug-light interval (DLI), and to investigate the impact of rapid PDT effects on the pharmacokinetic (PK) profiles of the released PTX. PK profiles of the prodrug were determined in key organs and a quantitative systems pharmacology (QSP) model was established to simulate PK profiles of the prodrug and the released PTX. Three illumination time points (DLI = 0.5, 9, or 48 h) were selected for the treatment based on the plasma/tumor ratio of the prodrug to achieve V-PDT (vascular targeted-PDT, 0.5 h), C-PDT (cellular targeted-PDT, 48 h), or both V- and C-PDT (9 h). The anti-tumor efficacy of the PTX prodrug was greatly influenced by the DLI. The 9 h DLI group, when both tumor and plasma concentrations of the prodrug were sufficient, showed the best antitumor effect. The clearance of the released PTX from tumor seemed to be largely impacted by blood circulation. Here, QSP modeling was an invaluable tool for rational optimization of the treatment conditions and for a deeper mechanistic understanding of the positive physiological effect of the combination therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Models, Biological , Paclitaxel/administration & dosage , Photochemotherapy/methods , Animals , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Mice , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology , Prodrugs , Time Factors
14.
Bioorg Med Chem Lett ; 29(12): 1537-1540, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30987891

ABSTRACT

Systemic side effects and high hydrophobicity are major disadvantages of paclitaxel (PTX), one of the most popular anticancer drugs. Here, we present singlet oxygen (SO)-activatable and mitochondria-targeted PTX prodrugs to overcome these problems and boost the cytotoxic effect of photodynamic therapy (PDT). Three PTX prodrugs were prepared by conjugating PTX with various cationic groups. Hydrophobicity was determined in LogD7.4 value. Mitochondrial localization was confirmed by fluorescence confocal microscopy and uptake of mitochondria-specific fluorescence probe. Dark- and photo-toxicity were measured in AY-27 cells with MTT assay. All three prodrugs showed better hydrophilicity than PTX and improved phototoxicity when combined with protoporphyrin IX (PpIX) PDT. In conclusion, SO-activatable and higher hydrophilic PTX prodrugs were successfully prepared. This approach could be used to improve the antitumor efficacy of PDT without the systemic side effects of PTX.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Paclitaxel/therapeutic use , Photochemotherapy/methods , Prodrugs/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Humans , Paclitaxel/pharmacology , Prodrugs/pharmacology , Singlet Oxygen
15.
ACS Omega ; 2(10): 6349-6360, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29104951

ABSTRACT

We recently demonstrated the far-red light-activatable prodrug of paclitaxel (PTX), Pc-(L-PTX)2. Upon illumination with a 690 nm laser, Pc-(L-PTX)2 showed combinational cell killing from rapid photodynamic therapy damage by singlet oxygen, followed by sustained chemotherapy effects from locally released PTX. However, its high lipophilicity (log D7.4 > 3.1) caused aggregation in aqueous solutions and has nonselectivity toward cancer cells. To solve these important problems, we prepared folic acid (FA)-conjugated and photoactivatable prodrugs of PTX with a polyethylene glycol (PEG) spacer of various chain lengths: FA-PEG n -Pc-L-PTX [n = 0 (0k, 5), ∼23 (1k, 7a), ∼45 (2k, 7b), ∼80 (3.5k, 7c), or ∼114 (5k, 7d)]. The PEGylated prodrugs 7a-d had a much improved hydrophilicity compared with the non-PEGylated prodrug, Pc-(L-PTX)2. As the PEG length increased, the hydrophilicity of the prodrug increased (log D7.4 values: 1.28, 0.09, -0.24, and -0.59 for 1k, 2k, 3.5k, and 5k PEG prodrugs, respectively). Fluorescence spectral data suggested that the PEGylated prodrugs had good solubility in the culture medium at lower concentrations (<1-2 µM), but showed fluorescence quenching due to limited solubility at higher concentrations (>2 µM). Dynamic light scattering indicated that all of the prodrugs formed nanosized particles in both phosphate-buffered saline and culture medium at a concentration of 5 µM. The PEG length affected both nonspecific and folate receptor (FR)-mediated uptake of the prodrugs. The enhanced cellular uptake was observed for the prodrugs with medium-sized PEGs (1k, 2k, or 3.5k) in FR-positive SKOV-3 cells, but not for the prodrugs with no PEG or with the longest PEG (5k), which suggests the optimal range of PEG length around 1k-3.5k for effective uptake of our prodrug system. Consistent with the cellular uptake pattern, medium-sized PEGylated prodrugs showed more potent phototoxic activity (IC50s, ∼130 nM) than prodrugs with no PEG or the longest PEG (IC50, ∼400 nM). In conclusion, we have developed far-red light-activatable prodrugs with improved water solubility and FR-targeting properties compared with the nontargeted prodrug.

16.
J Pharmacokinet Pharmacodyn ; 44(6): 521-536, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28913666

ABSTRACT

The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Drug Delivery Systems/methods , Intracellular Fluid/metabolism , Paclitaxel/pharmacokinetics , Photosensitizing Agents/pharmacokinetics , Prodrugs/pharmacokinetics , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Humans , Intracellular Fluid/drug effects , Models, Biological , Paclitaxel/chemistry , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Prodrugs/chemistry , Protein Transport/drug effects , Protein Transport/physiology
17.
Chem Commun (Camb) ; 53(11): 1884-1887, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28111669

ABSTRACT

Photo-unclick chemistry mediates visible and near IR-controlled drug release via a singlet oxygen (SO)-cleavable linker. Due to the limited diffusion distance of SO in biological systems, a photosensitizer and the SO-cleavable linker have been conjugated in one molecule or mixed in nano-drug delivery systems. In this communication, we demonstrate a new strategy to activate prodrugs with photo-unclick chemistry in an intermolecular fashion using an SO-cleavable CA4 prodrug and a mitochondria-specific photosensitizer, protoporphyrin IX, formed from prodrug hexyl-5-aminolevulinate.

18.
Anat Cell Biol ; 49(3): 199-205, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27722013

ABSTRACT

Dentin is the major part of tooth and formed by odontoblasts. Under the influence of the inner enamel epithelium, odontoblasts differentiate from ectomesenchymal cells of the dental papilla and secrete pre-dentin which then undergo mineralization into dentin. Transforming growth factor-beta (TGF-ß)/bone morphogenetic protein (BMP) signaling is essential for dentinogenesis; however, the precise molecular mechanisms remain unclear. To understand the role of TGF-ß/BMP signaling in odontoblast differentiation and dentin formation, we generated mice with conditional ablation of Smad4, a key intracellular mediator of TGF-ß/BMP signaling, using Osr2 or OC-Cre mice. Here we found the molars of Osr2CreSmad4 mutant mice exhibited impaired odontoblast differentiation, and normal dentin was replaced by ectopic bone-like structure. In Osr2CreSmad4 mutant mice, cell polarity of odontoblast was lost, and the thickness of crown dentin was decreased in later stage compared to wild type. Moreover, the root dentin was also impaired and showed ectopic bone-like structure similar to Osr2CreSmad4 mutant mice. Taken together, our results suggest that Smad4-dependent TGF-ß/BMP signaling plays a critical role in odontoblast differentiation and dentin formation during tooth development.

19.
J Med Chem ; 59(7): 3204-14, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26974508

ABSTRACT

Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and nonsmall cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer. Unfortunately, PDT is often followed by recurrence due to incomplete ablation of tumors. To overcome these problems, we prepared the far-red light-activatable prodrug of PTX by conjugating photosensitizer via singlet oxygen-cleavable aminoacrylate linker. Tubulin polymerization enhancement and cytotoxicity of prodrugs were dramatically reduced. However, once illuminated with far-red light, the prodrug effectively killed SKOV-3 ovarian cancer cells through the combined effects of PDT and locally released PTX. Ours is the first PTX prodrug that can be activated by singlet oxygen using tissue penetrable and clinically useful far-red light, which kills the cancer cells through the combined effects of PDT and site-specific PTX chemotherapy.


Subject(s)
Light , Ovarian Neoplasms/drug therapy , Paclitaxel/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Prodrugs/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Micelles , Ovarian Neoplasms/pathology , Tubulin/drug effects
20.
Bioorg Med Chem ; 24(7): 1540-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26928287

ABSTRACT

Photodynamic therapy (PDT) is a cancer treatment modality where photosensitizer (PS) is activated by visible and near IR light to produce singlet oxygen ((1)O2). However, (1)O2 has a short lifetime (<40 ns) and cannot diffuse (<20 nm) beyond the cell diameter (e.g., ∼ 1800 nm). Thus, (1)O2 damage is both spatially and temporally limited and does not produce bystander effect. In a heterogeneous tumor, cells escaping (1)O2 damage can regrow after PDT treatment. To overcome these limitations, we developed a prodrug concept (PS-L-D) composed of a photosensitizer (PS), an anti-cancer drug (D), and an (1)O2-cleavable linker (L). Upon illumination of the prodrug, (1)O2 is generated, which damages the tumor and also releases anticancer drug. The locally released drug could cause spatially broader and temporally sustained damage, killing the surviving cancer cells after the PDT damage. In our previous report, we presented the superior activity of our prodrug of CA4 (combretastatin A-4), Pc-(L-CA4)2, compared to its non-cleavable analog, Pc-(NCL-CA4)2, that produced only PDT effects. Here, we provide clear evidence demonstrating that the released anticancer drug, CA4, indeed damages the surviving cancer cells over and beyond the spatial and temporal limits of (1)O2. In the limited light illumination experiment, cells in the entire well were killed due to the effect of released anti-cancer drug, whereas only a partial damage was observed in the pseudo-prodrug treated wells. A time-dependent cell survival study showed more cell death in the prodrug-treated cells due to the sustained damage by the released CA4. Cell cycle analysis and microscopic imaging data demonstrated the typical damage patterns by CA4 in the prodrug treated cells. A time-dependent histological study showed that prodrug-treated tumors lacked mitotic bodies, and the prodrug caused broader and sustained tumor size reduction compared to those seen in the tumors treated with the pseudo-prodrug. This data consistently support that the released CA4 overcomes the spatiotemporal limitations of (1)O2, providing far superior antitumor effect.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Infrared Rays , Prodrugs/pharmacology , Singlet Oxygen/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Molecular Structure , Prodrugs/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...