Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38135955

ABSTRACT

Computer modeling and simulation (CM&S) technology is widely used in the medical device industry due to its advantages such as reducing testing time and costs. However, the developer's parameter settings during the modeling and simulation process can have a significant impact on the results. This study developed a test model for the rotational shear strength of dental implants and the constraint force of total knee replacements based on CM&S technology and proposes ideal parameters to ensure reliability. For dental implants, the load area and sliding contact conditions were considered, and for total knee replacements, the friction coefficient, medial-lateral displacement, valgus-varus rotation, and elastic modulus were considered. By comparing the simulation results and mechanical tests, boundary conditions with an error rate of less than 1.5% were selected. When a jig (gripper and collector) was applied with the same boundary conditions, an error rate of 48~22% occurred; otherwise, it was confirmed that the error rate was within 10~0.2%. The FE model was verified with an error of 2.49 to 3% compared to the mechanical test. The friction coefficient variable had the greatest influence on the results, accounting for 10 to 13%, and it was confirmed that valgus-varus rotation had a greater influence on the results than medial-lateral displacement. Relatively, the elastic modulus of the insert had the least effect on the results. These research results are expected to make CM&S techniques useful as a medical device digital development tool (M3DT) in the development of total knee replacements and dental implants.

2.
Neurointervention ; 12(2): 91-99, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28955511

ABSTRACT

PURPOSE: To determine the minimum required guiding catheter length for embolization of various intracranial aneurysms in anterior circulation and to analyze the effect of various patient factors on the required catheter length and potential interaction with its stability. MATERIALS AND METHODS: From December 2016 to March 2017, 90 patients with 93 anterior circulation aneurysms were enrolled. Three types of guiding catheters (Envoy, Envoy DA, and Envoy DA XB; Codman Neurovascular, Raynham, MA, USA) were used. We measured the in-the-body length of the catheter and checked the catheter tip location in the carotid artery. We analyzed factors affecting the in-the-body length and stability of the guiding catheter system. RESULTS: The average (±standard deviation) in-the-body length of the catheter was 84.2±5.9 cm. The length was significantly longer in men (89.1±5.6 vs. 82.1±4.6 cm, P<0.001), patients older than 65 years (87.7±7.8 vs. 82.7±4.2 cm, P<0.001), patients with a more tortuous arch (arch type 2 and 3) (87.5±7.4 vs. 82.7±4.4 cm, P<0.001), and patients with a distal aneurysm location (distal group) (86.2±5.0 vs. 82.7±6.1 cm, P=0.004). A shift in the tip location was noted in 19 patients (20.4%); there was no significant different among the 3 catheters (P=0.942). CONCLUSION: The minimum required length of a guiding catheter was 84 cm on average for elective anterior-circulation aneurysm embolization. The length increased in men older than 65 years with a more tortuous arch. We could reach a higher position with distal access catheters with little difference in the stability once we reached the target location.

SELECTION OF CITATIONS
SEARCH DETAIL
...