Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Food Sci Biotechnol ; 33(8): 1825-1837, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752123

ABSTRACT

Various citrus fruits' flavor compounds were analyzed using an electronic sensor (E-sensor), and odor-active compounds were identified using gas chromatography-mass spectrometry-olfactometry (GC-MS-O). In the E-tongue analysis, the intensity of sweetness, saltiness, and bitterness was highest in Citrus unshiu, while sourness and umami were highest in C. setomi. A total of 43 volatile compounds were detected in the E-nose analysis, and the compound with the highest peak area was limonene, a type of terpenoid, which exhibited a prominent peak area in C. unshiu. Principal component analysis between flavor compounds and each sample explained a total variance of 83.15% and led to the classification of three clusters. By GC-MS-O, 32 volatile compounds were detected, with limonene being the most abundant, ranging from 20.28 to 56.21 mg/kg. The odor-active compounds were identified as (E)-2-hexenal, hexanal, α-pinene, ß-myrcene, limonene, γ-terpinene, nonanal, and D-carvone, respectively.

2.
Food Sci Biotechnol ; 33(7): 1585-1592, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623426

ABSTRACT

This research investigated volatiles and odor active compounds in Osmanthus fragrans var. aurantiacus. Heterocyclics were mainly extracted from hexane and dichloromethane extracts. Ketones were mainly detected from butanol fraction, and alcohols were mainly extracted from the ethanol fraction. GC-O analysis investigated the contents and intensities of three major odor active compounds increasing by ramping up polarity Multivariate analysis, which includes principal component analysis (PCA) and hierarchical cluster analysis (HCA), by E-nose data showed 45.83% (PC1) and 29.27 (PC2) variances, respectively, and segregated two clusters. Multivariate analysis by GC-O data showed 65.64% (PC1) and 24.17% (PC2) variances, respectively, and segregated the three clusters, cluster I by ethanol extract, cluster II by dichloromethane extract, and cluster III by hexane and butanol extracts. This study demonstrates that different polarity solvents can collect various volatiles and odor active compound groups. Our findings can support basic research data as a natural and functional food additive.

3.
Food Chem X ; 22: 101304, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38544932

ABSTRACT

This study evaluated the effects of inhaling Osmanthus fragrans var. aurantiacus (OFA) extracts in Sprague-Dawley (SD) rats experiencing chronic stress. Rats were exposed to restraint stress or circadian disruption and were inhaled either distilled water or OFA extracts. Electronic nose (E-nose) analysis identified 35 volatile aromatic compounds (VACs) in OFA extracts. Chronic stress led to a decrease in body weight initially, serotonin concentration, and the weights of the liver, kidneys, and fat pads. Additionally, circadian disruption increased melatonin levels and decreased cholesterol concentrations. Inhalation of OFA increased dietary intake during the early phase and restored the tissue weights that have changed by chronic stress. Furthermore, it led to an increase in melatonin levels and changes in cholesterol levels. Taken together, our results indicate that OFA inhalation improves physiological changes caused by chronic stress through regulating dietary intake, restoring tissue weights, and modulating hormone and cholesterol levels.

4.
Food Chem ; 446: 138907, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38452508

ABSTRACT

This study investigated the effects of oven-roasting temperature (160, 180, and 200 â„ƒ) and time (5, 10, 15, and 20 min) on pomegranate seeds. Physicochemical properties, such as color (L*, a*, and b* values), browning index (BI), total phenolic and flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, and chemosensory properties, including taste and volatile compounds, were analyzed. The L* and a* values, and level of sourness, umami, sweetness, and terpenes decreased, whereas the b* value, BI, and level of saltiness, bitterness, furan derivatives, pyrazines, and sulfur-containing compounds, increased with roasting time. The findings of this study showed that the positive roasting conditions for pomegranate seeds were 10-20 min at 160 â„ƒ and, 5-10 min at 180 â„ƒ. This study is expected to be used as a primary reference for selecting the optimal oven-roasting conditions in which positive effects appear and for developing products utilizing pomegranate seeds.


Subject(s)
Pomegranate , Seeds/chemistry , Taste
5.
Food Sci Biotechnol ; 33(4): 855-876, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38371683

ABSTRACT

This study identified the aroma profile of salmon by-product for high utilization of by-products, including hydrolysates of head, frame, and skin were treated with reducing sugars and thermal processing. Electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS) coupled with gas chromatography-olfactometry (GC-O) were used to analyzed the aroma profile. A total of 140 and 90 volatile compounds were detected through E-nose and GC-MS respectively, and the main volatile compounds were aldehydes. A total of 23 odor active compounds were recognized using GC-O, and 3-methyl-butanal, heptanal, benzaldehyde, octanal, furfural, and methoxy-phenyl-oxime were identified as the aroma of salmon. Using multivariate analysis, the pattern between the pretreated samples and aroma profiles was confirmed, and there were clear separations among the samples. The results of this study provide the aroma profile of salmon by-products and are expected salmon by-products to be used as a potential food source.

6.
Food Chem X ; 21: 101119, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38282827

ABSTRACT

This study investigated the effects of roasting conditions on the physicochemical, taste, and volatile and odor-active compound (OAC) profiles of Coffea arabica L. At 150 ℃, roasting increased chlorogenic acid, total flavonoids, and caffeine concentrations. However, umami and sourness sensor decreased during the roasting process. At 210 ℃ roasting, total flavonoid and caffeine concentrations increased during the roasting process. Aldehydes, ketones, and sulfur-containing compounds dramatically increased during the roasting at 210 ℃ for 20 and 30 min in E-nose analysis. Pyrazines were mainly generated during the roasting at 210 ℃ for 20 and 30 min, and pyrazines showed the highest concentrations among all OACs in GC-olfactometry (GC-O) analysis. E-tongue data showed the separation of beans by roasting temperature. However, the E-nose and GC-O data showed the separation of beans by both roasting temperature and time via multivariate analysis. We identified similar results and patterns in the E-nose and GC-O analyses.

7.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513381

ABSTRACT

Pet owners think of their animals as part of their family, which further promotes the growth of the pet food market, encouraging pet owners to select nutritious, palatable, and high-quality foods for pets. Therefore, the evaluation of taste and volatile compounds in pet foods is essential to improve palatability. In this study, the sensory characteristics of taste and odor compounds in 10 commercially available dry dog foods were investigated using electronic tongue (E-tongue), electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O). Dry dog foods were separated based on the sensory properties of taste and volatile compounds through the multivariate analysis of integrated results of the E-tongue and E-nose. A total of 67 odor active compounds were detected through GC-MS and GC-O, and octanal, nonanal, 2-pentyl furan, heptanal, and benzaldehyde were identified as key odor compounds which may have positive effects on food intake. The multivariate analysis was used to classify samples based on key odor compounds. Volatile compounds responsible for aroma properties of samples were evaluated using GC-O and multivariate analysis in this present study for the first time. These results are expected to provide fundamental data for sensory evaluation in producing new dog foods with improved palatability.


Subject(s)
Smell , Volatile Organic Compounds , Dogs , Animals , Gas Chromatography-Mass Spectrometry/methods , Animal Feed/analysis , Taste , Volatile Organic Compounds/analysis , Odorants/analysis , Olfactometry/methods , Electronics , Electronic Nose
8.
Nutrients ; 14(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35565791

ABSTRACT

We explored the physiological effects of inhaling basil essential oil (BEO) and/or linalool and identified odor-active aroma compounds in BEO using gas chromatography/mass spectrometry (GC-MS) and GC-olfactometry (GC-O). Linalool was identified as the major volatile compound in BEO. Three groups of rats were administered BEO and linalool via inhalation, while rats in the control group were not. Inhalation of BEO for 20 min only reduced the total weight gain (190.67 ± 2.52 g) and increased the forced swimming time (47.33 ± 14.84 s) compared with the control group (219.67 ± 2.08 g, 8.33 ± 5.13 s). Inhalation of BEO for 5 min (392 ± 21 beats/min) only reduced the pulse compared with the control group (420 ± 19 beats/min). Inhalation of linalool only reduced the weight of white adipose tissue (5.75 ± 0.61 g). The levels of stress-related hormones were not significantly different among the groups. The total cholesterol and triglyceride levels decreased after inhalation of BEO for 20 min (by more than -10% and -15%, respectively). Low-density lipoprotein cholesterol levels were lowered (by more than -10%) by the inhalation of BEO and linalool, regardless of the inhalation time. In particular, BEO inhalation for 20 min was associated with the lowest level of low-density lipoprotein cholesterol (53.94 ± 2.72 mg/dL). High-density lipoprotein cholesterol levels increased after inhalation of BEO (by more than +15%). The atherogenic index and cardiac risk factors were suppressed by BEO inhalation. Animals exposed to BEO and linalool had no significant differences in hepatotoxicity. These data suggest that the inhalation of BEO and linalool may ameliorate cardiovascular and lipid dysfunctions. These effects should be explored further for clinical applications.


Subject(s)
Dyslipidemias , Ocimum basilicum , Oils, Volatile , Acyclic Monoterpenes , Adipose Tissue, White , Animals , Cholesterol , Dyslipidemias/drug therapy , Lipoproteins, LDL , Ocimum basilicum/chemistry , Odorants , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Rats
9.
J Food Sci ; 87(6): 2450-2462, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35591766

ABSTRACT

This study investigated the antiobesogenic effects of the inhalation of volatile compounds derived from basil essential oil (BEO) in high fat diet-induced obese rats. A total of 47 volatile compounds were identified in BEO using gas chromatography-mass spectrometry. Major volatile compounds identified by olfactory testing include linalool oxide, linalool, 1-menthene, and carvone. White adipose tissue significantly decreased in the rats that inhaled 0.3% BEO (more than +10%) compared to the control. Plasma marker analysis showed increased high-density lipoprotein-cholesterol (ca. double fold) and decreased low-density lipoprotein-cholesterol (more than -30%) levels in inhaled 1% BEO group compared to the control. Leptin significantly decreased in the 0.3 and 1% BEO groups (more than -70 and -85%, respectively). Last, systolic blood pressure at week 12 was significantly lower in inhaled 1% BEO group (more than -15%) compared to the control. The results of this study suggest that BEO inhalation may be effective in managing plasma lipid markers (cholesterols and leptin) and possibly metabolic disorders such as obesity. Practical Application: Changes in metabolic health markers, which are effected by inhalation of volatiles in basil (Ocimum basilicum) essential oil, will provide physiological variations in vivo to the public. In this study, the opposite effects were identified between 0.3% and 1% inhalation, respectively. Therefore, our findings will provide optimized and useful guidance for inhalation of basil essential oil.


Subject(s)
Ocimum basilicum , Ocimum , Oils, Volatile , Animals , Biomarkers/metabolism , Diet, High-Fat , Leptin/metabolism , Leptin/pharmacology , Obesity/drug therapy , Ocimum basilicum/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Rats
10.
Nutrients ; 14(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35215391

ABSTRACT

In this study, odor components were analyzed using gas chromatography/mass spectrometry (GC/MS) and solid-phase microextraction (SPME), and odor-active compounds (OACs) were identified using GC-olfactometry (GC-O). Among the volatile compounds identified through GC-O, p-anisaldehyde, limonene, estragole, anethole, and trans-anethole elicit the fennel odor. In particular, trans-anethole showed the highest odor intensity and content. Changes in body weight during the experimental period showed decreasing values of fennel essential oil (FEO)-inhaled groups, with both body fat and visceral fat showing decreased levels. An improvement in the body's lipid metabolism was observed, as indicated by the increased levels of cholesterol and triglycerides and decreased levels of insulin in the FEO-inhaled groups compared to group H. Furthermore, the reduction in systolic blood pressure and pulse through the inhalation of FEO was confirmed. Our results indicated that FEO inhalation affected certain lipid metabolisms and cardiovascular health, which are obesity-related dysfunction indicators. Accordingly, this study can provide basic research data for further research as to protective applications of FEO, as well as their volatile profiles.


Subject(s)
Foeniculum , Metabolic Diseases , Oils, Volatile , Adipose Tissue/chemistry , Animals , Foeniculum/chemistry , Lipid Metabolism , Obesity , Oils, Volatile/chemistry , Rats
11.
Nutrients ; 12(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668680

ABSTRACT

This study investigated effects of patchouli essential oil (PEO) inhalation on metabolic parameters. First, to characterize aromatic compounds in PEO, solid-phase microextraction-gas chromatography/mass spectrometric detection was employed in which 19 aromatic compounds were identified. In GC-olfactometry analysis, linalool, α-patchoulene, and ß-patchoulene were found to be the constituents exhibiting the highest similarity to the aromatic compounds in patchouli. In an animal experiment using Sprague Darley rats, groups with PEO inhalation had a reduced food intake compared to the control group. Additionally, body weight was lower in the obesity-induced animal model exposed to PEO inhalation than the group without PEO. However, we found no significant difference in organ weights between groups. In our serum analysis, high-density lipoprotein cholesterol was significantly higher in the PEO inhalation groups, while low-density lipoprotein cholesterol content was highest in the positive control group, suggesting that inhalation of the aromatic compounds present in patchouli may improve cholesterol profile. In addition, leptin levels were reduced in the groups treated with PEO inhalation, which explains the differences in food intake and body weight gains. Last, animal groups exposed to PEO inhalation showed a relatively lower systolic blood pressure which suggests that inhalation of PEO (or aromatic compounds therein) may assist in regulating blood pressure. Collectively, our data demonstrate that the inhalation of PEO influenced certain markers related to metabolic diseases, hence provide basic data for future research as to preventive/therapeutic applications of PEO as well as their aromatic constituents.


Subject(s)
Anti-Obesity Agents , Obesity/metabolism , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Phytotherapy , Pogostemon/chemistry , Acyclic Monoterpenes/analysis , Administration, Inhalation , Animals , Blood Preservation , Blood Pressure/drug effects , Body Weight/drug effects , Disease Models, Animal , Eating/drug effects , Leptin/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Male , Obesity/drug therapy , Obesity/prevention & control , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Rats, Sprague-Dawley
12.
Virus Res ; 110(1-2): 161-7, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15845267

ABSTRACT

The population diversity of progeny viruses of Kyuri green mottle mosaic virus (KGMMV) in consecutive serial passages in two systemic hosts, zucchini squash and cucumber plants, established from genetically identical viral RNA, was examined in this study. An initial plant was inoculated with in vitro transcripts from a full-length cDNA clone of KGMMV. The initial viral population (passage 0) was transferred five times in parallel populations in the same hosts species for analysis of progenies of KGMMV. The percentage of mutations of progeny viruses fluctuated slightly, as expected, during the serial passage, and these results did not correlated with the mutation frequency calculated as the total number of mutation observed in all the clones sequenced for a given viral population were divided by the total number of bases sequenced for the population. The mutation frequencies represented similar distributions over the course of serial passages in the two systemic host plants. Seventeen unique mutations were detected from a total of 40 clones (19,120 bases) sequenced, indicating a relatively small overall mutation rate of 17 nucleotide substitutions. The majority of observed mutations in the viral populations consisted of substitutions: 61.60 and 64.08% of the mutations in cucumber and zucchini populations, respectively. The types of transitions and silent mutations indicated that progenies of KGMMV reached stabilized selection during the host passages and maintained viral quasispecies in systemic hosts.


Subject(s)
Genetic Variation , RNA, Viral/genetics , RNA, Viral/isolation & purification , Tobamovirus/classification , Tobamovirus/genetics , Cucumis/virology , Cucurbita/virology , Point Mutation , Serial Passage
13.
J Clin Endocrinol Metab ; 89(1): 150-6, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14715842

ABSTRACT

Resistin is an adipocyte-derived peptide that might play a role in obesity and insulin resistance. However, its role in humans is largely unclear. Although many studies have measured the expression of human resistin in tissues, the circulating concentrations of resistin and its relation to metabolic parameters in humans are unknown. We developed an ELISA for human resistin and measured plasma concentrations in aged individuals with or without type 2 diabetes mellitus. To validate the results of plasma resistin concentrations in our subjects, plasma adiponectin concentrations were also determined, which were higher in nondiabetic subjects than in type 2 diabetic patients and correlated with the homeostasis model assessment for insulin resistance (HOMA-IR). Log-transformed plasma resistin concentrations (log-resistin) were higher in diabetic patients compared with normal individuals (0.50 +/- 0.39 vs. 0.28 +/- 0.51 ng/ml; P < 0.001), and this difference was significant after controlling for gender and body mass index. Log-resistin did not show a significant correlation with HOMA-IR, waist circumference, body mass index, blood pressure, or total cholesterol. The plasma glucose concentration was an independent factor associated with log-resistin. In conclusion, plasma resistin concentrations are elevated in patients with type 2 diabetes, but are not associated with insulin resistance or obesity.


Subject(s)
Antibodies, Monoclonal , Diabetes Mellitus, Type 2/blood , Enzyme-Linked Immunosorbent Assay , Hormones, Ectopic/blood , Aged , Blood Glucose/analysis , Blood Pressure , Body Constitution , Body Mass Index , Cholesterol/blood , Female , Homeostasis , Humans , Insulin Resistance , Male , Middle Aged , Resistin
SELECTION OF CITATIONS
SEARCH DETAIL
...