Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(7): 071002, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867826

ABSTRACT

We report an axion dark matter search at Dine-Fischler-Srednicki-Zhitnitskii sensitivity with the CAPP-12TB haloscope, assuming axions contribute 100% of the local dark matter density. The search excluded the axion-photon coupling g_{aγγ} down to about 6.2×10^{-16} GeV^{-1} over the axion mass range between 4.51 and 4.59 µeV at a 90% confidence level. The achieved experimental sensitivity can also exclude Kim-Shifman-Vainshtein-Zakharov axion dark matter that makes up just 13% of the local dark matter density. The CAPP-12TB haloscope will continue the search over a wide range of axion masses.

2.
Sci Adv ; 8(8): eabm9928, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35196091

ABSTRACT

The axion is a highly motivated elementary particle that could address two fundamental questions in physics-the strong charge-parity (CP) problem and the dark matter mystery. Experimental searches for this hypothetical particle started reaching theoretically interesting sensitivity levels, particularly in the micro-electron volt (gigahertz) region. They rely on microwave resonators in strong magnetic fields with signals read out by quantum noise limited amplifiers. Concurrently, there have been intensive experimental efforts to widen the search range by devising various techniques and to enhance sensitivities by implementing advanced technologies. These orthogonal approaches will enable us to explore most of the parameter space for axions and axion-like particles within the next decades, with the 1- to 25-gigahertz frequency range to be conquered well within the first decade. We review the experimental aspects of axion physics and discuss the past, present, and future of the direct search programs.

3.
Phys Rev Lett ; 126(19): 191802, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34047607

ABSTRACT

The Center for Axion and Precision Physics Research at the Institute for Basic Science is searching for axion dark matter using ultralow temperature microwave resonators. We report the exclusion of the axion mass range 10.7126-10.7186 µeV with near Kim-Shifman-Vainshtein-Zakharov (KSVZ) coupling sensitivity and the range 10.16-11.37 µeV with about 9 times larger coupling at 90% confidence level. This is the first axion search result in these ranges. It is also the first with a resonator physical temperature of less than 40 mK.

4.
Phys Rev Lett ; 125(22): 221302, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33315449

ABSTRACT

We present the first results of a search for invisible axion dark matter using a multiple-cell cavity haloscope. This cavity concept was proposed to provide a highly efficient approach to high-mass regions compared to the conventional multiple-cavity design, with larger detection volume, simpler detector setup, and a unique phase-matching mechanism. Searches with a double-cell cavity superseded previous reports for the axion-photon coupling over the mass range between 13.0 and 13.9 µeV. This result not only demonstrates the novelty of the cavity concept for high-mass axion searches, but also suggests it can make considerable contributions to the next-generation experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...