Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 413: 110592, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38308878

ABSTRACT

Raw almonds have been associated with Salmonella outbreaks and multiple recalls related to Listeria monocytogenes contamination. While steam treatment has been approved for pasteurizing both conventional and organic whole almonds, there is limited understanding of how water activity (aw) influences the effectiveness of steam treatments in decontaminating almonds. Hence, this study aimed to assess and compare the efficacy of steam treatments against Listeria innocua and Enterococcus faecium NRRL B-2354, the known non-pathogenic surrogates, on almonds. It also sought to investigate the impact of almond's aw on bacterial resistance during steam treatments. Almond kernels were inoculated with ~8 log10 CFU/g of either E. faecium or L. innocua and equilibrated to aw 0.25 or 0.45 before being subjected to steam treatments at temperatures of 100-135 °C. Our results revealed that L. innocua exhibited lower resistance to steam compared to E. faecium, with 1.2-2.6 log10 CFU/g reductions for L. innocua and 1.0-2.0 log10 CFU/g reductions for E. faecium when the surface temperature of almonds reached 100-130 °C, depending on the aw of the almonds. The obtained DL. innocua, 100-130°C-values were 2.0-16.6 s, and DE. faecium, 100-130°C-values were 4.0-21.8 s, depending on the aw of almonds. In general, elevating steam temperatures and almond aw decreased the tolerance of L. innocua and E. faecium during steam inactivation. In addition, the z-values indicated that E. faecium on almonds was less sensitive to change in steam temperature compared to L. innocua, especially at lower aw. The zL. innocua-values were 36.6 °C and 35.7 °C, while zE. faecium-values were 48.9 °C and 42.7 °C in almonds with aw 0.25 and 0.45, respectively. Results from this study suggest that steam treatments serve as effective interventions for controlling pathogen contaminations in raw almonds.


Subject(s)
Enterococcus faecium , Listeria , Prunus dulcis , Steam , Water/analysis , Enterococcus faecium/physiology , Colony Count, Microbial , Food Microbiology
2.
J Food Sci ; 82(12): 2977-2986, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29083492

ABSTRACT

Cold-smoked salmon (CSS) production lacks a validated kill step for Listeria monocytogenes. Although Listeria spp. are reduced by nisin or high-pressure processing (HPP), CSS muscle discoloration is often observed after HPP. Effects of nisin and low-temperature HPP on L. innocua survival (nonpathogenic surrogate for L. monocytogenes), spoilage organism growth, color, and sensory preference and peelability of CSS were studied. Cold-smoked sockeye salmon (Oncorhynchus nerka) fillets ± nisin (10 µg/g) were inoculated with a 3-strain L. innocua cocktail, vacuum-packaged, frozen at - 30 °C, and high-pressure processed in an ice slurry within an insulated sleeve. Initial experiments indicated that nisin and HPP for 120 s at 450 MPa (N450) and 600 MPa (N600) were most effective against L. innocua, and thus were selected for further storage studies. L. innocua in N450 and N600-treated CSS was reduced 2.63 ± 0.15 and 3.99 ± 0.34 Log CFU/g, respectively, immediately after HPP. L. innocua and spoilage growth were not observed in HPP-treated CSS during 36 d storage at 4 °C. Low-temperature HPP showed a smaller increase in lightness of CSS compared to ambient-temperature HPP performed in previous studies. Sensory evaluation indicated that overall liking of CSS treated with N450 and N600 were preferred over the control by 61% and 62% of panelists, respectively (P < 0.05). Peelability of sliced CSS was reduced by HPP (P < 0.05). Nisin in combination with low-temperature HPP was effective in controlling L. innocua in CSS while maintaining consumer acceptability. PRACTICAL APPLICATION: Cold-smoked salmon is a high-risk ready-to-eat product that may be contaminated with L. monocytogenes. Results showed that nisin combined with high-pressure processing at low temperature, reduced the population of Listeria and controlled the spoilage organisms during storage. As an added benefit, high-pressure processing at low temperature may reduce lightening of the salmon flesh, leading to enhanced consumer preference.


Subject(s)
Fish Products/analysis , Food Preservation/methods , Listeria/growth & development , Nisin/pharmacology , Salmon/microbiology , Animals , Cold Temperature , Colony Count, Microbial , Fish Products/microbiology , Food Contamination/analysis , Food Preservation/instrumentation , Humans , Listeria/drug effects , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Pressure , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...