Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 20(11): 2135-43, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19683937

ABSTRACT

When ionized by electrospray from acidic solutions, the tripeptides Pro-His-Xaa (Xaa = Gly, Ala, Leu) form abundant doubly-protonated ions, [M + 2H]2+. Collision-induced dissociation (CID) of these doubly-protonated species results, in part, in formation of b(2)(2+) ions, which fragment further by loss of CO to form a(2)(2+) ions; the latter fragment by loss of CO to form the Pro and His iminium [immonium is commonly used in peptide MS work] ions. Although larger doubly-charged b ions are known, this represents the first detailed study of b(2)(2+) ions in CID of small doubly protonated peptides. The most abundant CID products of the studied doubly-protonated peptides arise mainly in charge separation involving two primary fragmentation channels, formation of the b2/y1 pair and formation of the a1/y2 pair. Combined molecular dynamics and density functional theory calculations are used to gain insight into the structures and fragmentation pathways of doubly-protonated Pro-His-Gly including the energetics of potential protonation sites, backbone cleavages, post-cleavage charge-separation reactions and the isomeric structures of b(2)(2+) ions. Three possible structures are considered for the b(2)(2+) ions: the oxazolone, diketopiperazine, and fused ring isomers. The last is formed by cleavage of the His-Gly amide bond on a pathway that is initiated by nucleophilic attack of one of the His side-chain imidazole nitrogens. Our calculations indicate the b(2)(2+) ion population is dominated by the oxazolone and/or fused ring isomers.


Subject(s)
Ions , Oligopeptides/chemistry , Proline/chemistry , Amides/chemistry , Amino Acid Sequence , Diketopiperazines/chemistry , Dimerization , Dipeptides/chemistry , Isomerism , Models, Chemical , Models, Molecular , Molecular Sequence Data , Molecular Structure , Nitrogen Isotopes , Protein Structure, Secondary , Protons , Spectrometry, Mass, Electrospray Ionization , Thermodynamics
2.
Anal Chim Acta ; 627(1): 71-81, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18790129

ABSTRACT

With the invention of electrospray ionization and matrix-assisted laser desorption/ionization, scientists employing modern mass spectrometry naturally face new challenges with respect to background interferences and contaminants that might not play a significant role in traditional or other analytical techniques. Efforts to continuously minimize sample volumes and measurable concentrations increase the need to understand where these interferences come from, how they can be identified, and if they can be eliminated. Knowledge of identity enables their use as internal calibrants for accurate mass measurements. This review/tutorial summarizes current literature on reported contaminants and introduces a number of novel interferences that have been observed and identified in our laboratories over the past decade. These include both compounds of proteinaceous and non-proteinaceous nature. In the supplemental data a spreadsheet is provided that contains a searchable ion list of all compounds identified to date.


Subject(s)
Artifacts , Mass Spectrometry/methods , Animals , Humans , Peptides/chemistry , Polymers/chemistry , Proteins/chemistry , Solvents/chemistry
3.
J Am Soc Mass Spectrom ; 18(11): 1959-66, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17869129

ABSTRACT

The fragmentation reactions of the protonated dipeptides Gly-Arg and Arg-Gly have been studied using collision-induced dissociation (CID) in a quadrupole ion trap, by in-source CID in a single-quadrupole mass spectrometer and by CID in the quadrupole cell of a QqTOF mass spectrometer. In agreement with earlier quadrupole ion trap studies (Farrugia, J. M.; O'Hair, R. A. J., Int. J. Mass Spectrom., 2003, 222, 229), the CID mass spectra obtained with the ion trap for the MH(+) ions and major fragment ions are very similar for the two isomers indicating rearrangement to a common structure before fragmentation. In contrast, in-source CID of the MH(+) ions and QqTOF CID of the MH(+), [MH - NH(3)](+) and [MH <23 HN = C(NH(2))(2)](+) ions provide distinctly different spectra for the isomeric dipeptides, indicating that rearrangement to a common structure has not occurred to a significant extent under these conditions even near the threshold for fragmentation in the QqTOF instrument. Clearly, under normal operating conditions significantly different fragmentation behavior is observed in the ion trap and beam-type experiments. This different behavior probably can be attributed to the shorter observation times and concomitant higher excitation energies in the in-source and QqTOF experiments compared to the long observation times and lower excitation energies relevant to the ion trap experiments. Based largely on elemental compositions derived from accurate mass measurements in QqTOF studies fragmentation schemes are proposed for the MH(+), [MH - NH(3)](+), and [MH - (HN = C(NH(2))(2))](+) ions.


Subject(s)
Arginine/chemistry , Dipeptides/chemistry , Glycine/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Molecular Structure , Protons
4.
J Am Chem Soc ; 128(32): 10364-5, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-16895391

ABSTRACT

Collision-induced dissociation (CID) of protonated YAGFL-NH2 leads to nondirect sequence fragment ions that cannot directly be derived from the primary peptide structure. Experimental and theoretical evidence indicate that primary fragmentation of the intact peptide leads to the linear YAGFLoxa b5 ion with a C-terminal oxazolone ring that is attacked by the N-terminal amino group to induce formation of a cyclic peptide b5 isomer. The latter can undergo various proton transfer reactions and opens up to form something other than the YAGFLoxa linear b5 isomer, leading to scrambling of sequence information in the CID of protonated YAGFL-NH2.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence , Mass Spectrometry , Molecular Sequence Data
5.
Bioorg Med Chem Lett ; 15(23): 5270-3, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16202587

ABSTRACT

N-(4-Methoxybenzyl)-N'-(5-nitro-1,3-thiazol-2-yl)urea (AR-A014418), a highly selective inhibitor of glycogen synthase kinase-3beta (GSK-3beta), was radiolabelled with carbon-11 (half-life=20.4min) for cerebral positron emission tomography (PET) studies. Reaction of desmethyl AR-A014418 with [(11)C]CH(3)I produced [(11)C]AR-A014418 in 17% decay-corrected radiochemical yield, based on [(11)C]CO(2), with 3230mCi/micromol specific activity after a 30min synthesis time. The desmethyl precursor of AR-A014418 was synthesized in 23% yield by a novel one-pot reaction of 2-amino-5-nitrothiazole with in situ generated TMS-protected 4-hydroxybenzylisocyanate, following deprotection with acid. Ex vivo biodistribution studies were conducted after [(11)C]AR-A014418 was administered via tail vein injection into Sprague-Dawley rats. Very low levels of radioactivity were found in all brain regions (0.08% injected dose/gram of tissue) at 5 and 30min post-injection, uncorrected for vascular compartment. Considering the extremely poor brain penetration of [(11)C]AR-A014418 this compound cannot be used to study GSK-3beta in cerebral PET studies. Furthermore, the specific pharmacological mechanism(s) of antidepressant-like activity attributed to AR-A014418 should be investigated.


Subject(s)
Glycogen Synthase Kinase 3/analysis , Positron-Emission Tomography , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Urea/analogs & derivatives , Animals , Carbon Radioisotopes , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta , Isotope Labeling , Rats , Rats, Sprague-Dawley , Tissue Distribution , Urea/chemical synthesis , Urea/pharmacokinetics
6.
J Mass Spectrom ; 40(9): 1173-86, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16041740

ABSTRACT

The collision-induced dissociation (CID) fragmentation reactions of a variety of deprotonated peptides containing proline have been studied in detail using MS(2) and MS(3) experiments, deuterium labelling and accurate mass measurements when necessary. The [M--H--CO(2)](-) (a(2)) ion derived from H-Pro-Xxx-OH dipeptides shows an unusual fragmentation involving loss of C(2)H(4); this fragmentation reaction is not observed for larger peptides. The primary fragmentation reactions of deprotonated tripeptides with an N-terminal proline are formation of a(3) and y(1) ions. When proline is in the central position of tripeptides, a(3), y(2) and y(1) ions are the primary fragmentation products of [M--H](-), while when the proline is in the C-terminal position, a(3)and y(1) ions are the major primary products. In the latter case, the a(3) ion fragments primarily to the ''b(2) ion; further evidence is presented that the ''b(2) ions have a deprotonated oxazolone structure. Larger deprotonated peptides having at least two amino acid residues N-terminal to proline show a distinct preference for cleavage of the amide bond N-terminal to proline to form, mainly, the appropriate y ion. This proline effect is compared and contrasted with the similar proline effect observed in the fragmentation of protonated peptides containing proline.


Subject(s)
Peptides/chemistry , Proline/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Protons
7.
J Am Soc Mass Spectrom ; 15(12): 1810-9, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15589757

ABSTRACT

The fragmentation reactions of the singly-protonated oligoalanines trialanine to hexaalanine have been studied using energy-resolved mass spectrometry in MS(2) and MS(3) experiments. The primary fragmentation reactions are rationalized in terms of the b(x)-y(z) pathway of amide bond cleavage which results in formation of a proton-bound complex of an oxazolone and a peptide/amino acid; on decomposition of this complex the species of higher proton affinity preferentially retains the proton. For protonated pentaalanine and protonated hexaalanine the major primary fragmentation reaction involves cleavage of the C-terminal amide bond to form the appropriate b ion. The lower mass b ions originate largely, if not completely, by further fragmentation of the initially formed b ion. MS(3) energy-resolved experiments clearly show the fragmentation sequence b(n) --> b(n-1) --> b(n-2). A more minor pathway for the alanines involves the sequence b(n) --> a(n) --> b(n-1) --> b(n-2). The a(5) ion formed from hexaalanine loses, in part, NH(3) to begin the sequence of fragmentation reactions a(5) --> a(5)* --> a(4)* --> a(3)* where a(n)* = a(n) - NH(3). The a(3)* ion also is formed from the b(3) ion by the sequence b(3) --> a(3) --> a(3)* with the final step being sufficiently facile that the a(3) ion is not observed with significant intensity in CID mass spectra. A cyclic structure is proposed for the a(3)* ion.


Subject(s)
Alanine/chemistry , Amides/chemistry , Oligopeptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Protons
8.
Rapid Commun Mass Spectrom ; 18(14): 1635-40, 2004.
Article in English | MEDLINE | ID: mdl-15282790

ABSTRACT

Tandem mass spectrometric experiments have been carried out on the protonated amides H-Gly-Ala-NH2, H-Ala-Gly-NH2, H-Ala-Val-NH2, H-Val-Ala-pNA, H-Leu-Phe-NH2, H-Phe-Leu-NH2, H-Phe-Tyr-NH2 and H-Tyr-Phe-NH2 with particular emphasis on the fragmentation of the isomeric a2 ions derived therefrom. Primary fragmentation reactions of the protonated amides involve formation of the y1" and b2 ions with further fragmentation of the b2 ion to form the a2 ion which fragments to form iminium ions. Collision-induced dissociation studies of the mass-selected a2 ions were carried out. For the Gly-Ala, Ala-Gly and Val-Ala a2 ions, weak signals were observed corresponding to loss of CO from the a2 ion. With the exception of the Gly-Ala, Ala-Gly and Val-Ala a2 ions, both possible iminium ions (a1 and the internal iminium ion) are observed with the most abundant being that formed by proton attachment to the imine of higher proton affinity. The results provide strong support for the recently proposed (El Aribi et al. J. Am. Chem. Soc. 2003; 125: 9229) mechanism of fragmentation of a2 ions which involves elimination of CO from the a2 ion to form a proton-bound complex of two imines. Based on this mechanism ab initio calculations of the total energies of the a2 ions and the transition states for fragmentation have been carried out giving the energy barrier for fragmentation of each a2 ion. The experimental results are interpreted in terms of these energetics data, unimolecular rate constants calculated by using the RRKM theory, and the imine proton affinities.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Imines/chemistry , Oligopeptides/chemistry , Models, Molecular , Molecular Conformation , Protons , Spectrometry, Mass, Electrospray Ionization/methods
9.
J Am Soc Mass Spectrom ; 15(4): 446-56, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15047050

ABSTRACT

The fragmentation reactions of deprotonated N-benzoyl peptides, specifically hippurylglycine, hippurylglyclyclycine, and hippurylphenylalanine (hippuryl = N-benzoylGly) have been studied using MS2 and MS3 experiments as well as deuterium labeling. A major fragment ion is observed at m/z 160 ([C9H6NO2]-) which, upon collisional activation, mainly eliminates CO2 indicating that the two oxygen atoms have become bonded to the same carbon. This observation is rationalized in terms of formation of deprotonated 2-phenyl-5-oxazolone. Various pathways to the deprotonated oxazolone have been elucidated through MS3 experiments. Fragmentation of deprotonated N-acetylalanylalanine gives a relatively weak signal at m/z 112 which, upon collisional activation, fragments, in part, by loss of CO2 leading to the conclusion that the m/z 112 ion is deprotonated 2,4-dimethyl-5-oxazolone.


Subject(s)
Glycine/analogs & derivatives , Oxazolone/chemistry , Peptide Fragments/chemistry , Peptides/chemistry , Glycine/chemistry , Mass Spectrometry , Molecular Structure , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...